3,158 research outputs found

    A Stochastic Model Predictive Control Approach for Driver-Aided Intersection Crossing With Uncertain Driver Time Delay

    Full text link
    We investigate the problem of coordinating human-driven vehicles in road intersections without any traffic lights or signs by issuing speed advices. The vehicles in the intersection are assumed to move along an a priori known path and to be connected via vehicle-to-vehicle communication. The challenge arises with the uncertain driver reaction to a speed advice, especially in terms of the driver reaction time delay, as it might lead to unstable system dynamics. For this control problem, a distributed stochastic model predictive control concept is designed which accounts for driver uncertainties. By optimizing over scenarios, which are sequences of independent and identically distributed samples of the uncertainty over the prediction horizon, we can give probabilistic guarantees on constraint satisfaction. Simulation results demonstrate that the scenario-based approach is able to avoid collisions in spite of uncertainty while the non-stochastic baseline controller is not.Comment: Submitted to European Control Conference 2019 (ECC19

    Implementation and Evaluation of a Cooperative Vehicle-to-Pedestrian Safety Application

    Full text link
    While the development of Vehicle-to-Vehicle (V2V) safety applications based on Dedicated Short-Range Communications (DSRC) has been extensively undergoing standardization for more than a decade, such applications are extremely missing for Vulnerable Road Users (VRUs). Nonexistence of collaborative systems between VRUs and vehicles was the main reason for this lack of attention. Recent developments in Wi-Fi Direct and DSRC-enabled smartphones are changing this perspective. Leveraging the existing V2V platforms, we propose a new framework using a DSRC-enabled smartphone to extend safety benefits to VRUs. The interoperability of applications between vehicles and portable DSRC enabled devices is achieved through the SAE J2735 Personal Safety Message (PSM). However, considering the fact that VRU movement dynamics, response times, and crash scenarios are fundamentally different from vehicles, a specific framework should be designed for VRU safety applications to study their performance. In this article, we first propose an end-to-end Vehicle-to-Pedestrian (V2P) framework to provide situational awareness and hazard detection based on the most common and injury-prone crash scenarios. The details of our VRU safety module, including target classification and collision detection algorithms, are explained next. Furthermore, we propose and evaluate a mitigating solution for congestion and power consumption issues in such systems. Finally, the whole system is implemented and analyzed for realistic crash scenarios

    Optimal speed trajectory and energy management control for connected and automated vehicles

    Get PDF
    Connected and automated vehicles (CAVs) emerge as a promising solution to improve urban mobility, safety, energy efficiency, and passenger comfort with the development of communication technologies, such as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I). This thesis proposes several control approaches for CAVs with electric powertrains, including hybrid electric vehicles (HEVs) and battery electric vehicles (BEVs), with the main objective to improve energy efficiency by optimising vehicle speed trajectory and energy management system. By types of vehicle control, these methods can be categorised into three main scenarios, optimal energy management for a single CAV (single-vehicle), energy-optimal strategy for the vehicle following scenario (two-vehicle), and optimal autonomous intersection management for CAVs (multiple-vehicle). The first part of this thesis is devoted to the optimal energy management for a single automated series HEV with consideration of engine start-stop system (SSS) under battery charge sustaining operation. A heuristic hysteresis power threshold strategy (HPTS) is proposed to optimise the fuel economy of an HEV with SSS and extra penalty fuel for engine restarts. By a systematic tuning process, the overall control performance of HPTS can be fully optimised for different vehicle parameters and driving cycles. In the second part, two energy-optimal control strategies via a model predictive control (MPC) framework are proposed for the vehicle following problem. To forecast the behaviour of the preceding vehicle, a neural network predictor is utilised and incorporated into a nonlinear MPC method, of which the fuel and computational efficiencies are verified to be effective through comparisons of numerical examples between a practical adaptive cruise control strategy and an impractical optimal control method. A robust MPC (RMPC) via linear matrix inequality (LMI) is also utilised to deal with the uncertainties existing in V2V communication and modelling errors. By conservative relaxation and approximation, the RMPC problem is formulated as a convex semi-definite program, and the simulation results prove the robustness of the RMPC and the rapid computational efficiency resorting to the convex optimisation. The final part focuses on the centralised and decentralised control frameworks at signal-free intersections, where the energy consumption and the crossing time of a group of CAVs are minimised. Their crossing order and velocity trajectories are optimised by convex second-order cone programs in a hierarchical scheme subject to safety constraints. It is shown that the centralised strategy with consideration of turning manoeuvres is effective and outperforms a benchmark solution invoking the widely used first-in-first-out policy. On the other hand, the decentralised method is proposed to further improve computational efficiency and enhance the system robustness via a tube-based RMPC. The numerical examples of both frameworks highlight the importance of examining the trade-off between energy consumption and travel time, as small compromises in travel time could produce significant energy savings.Open Acces

    Validation of trajectory planning strategies for automated driving under cooperative, urban, and interurban scenarios.

    Get PDF
    149 p.En esta Tesis se estudia, diseña e implementa una arquitectura de control para vehículos automatizados de forma dual, que permite realizar pruebas en simulación y en vehículos reales con los mínimos cambios posibles. La arquitectura descansa sobre seis módulos: adquisición de información de sensores, percepción del entorno, comunicaciones e interacción con otros agentes, decisión de maniobras, control y actuación, además de la generación de mapas en el módulo de decisión, que utiliza puntos simples para la descripción de las estructuras de la ruta (rotondas, intersecciones, tramos rectos y cambios de carril)Tecnali

    A comprehensive survey on cooperative intersection management for heterogeneous connected vehicles

    Get PDF
    Nowadays, with the advancement of technology, world is trending toward high mobility and dynamics. In this context, intersection management (IM) as one of the most crucial elements of the transportation sector demands high attention. Today, road entities including infrastructures, vulnerable road users (VRUs) such as motorcycles, moped, scooters, pedestrians, bicycles, and other types of vehicles such as trucks, buses, cars, emergency vehicles, and railway vehicles like trains or trams are able to communicate cooperatively using vehicle-to-everything (V2X) communications and provide traffic safety, efficiency, infotainment and ecological improvements. In this paper, we take into account different types of intersections in terms of signalized, semi-autonomous (hybrid) and autonomous intersections and conduct a comprehensive survey on various intersection management methods for heterogeneous connected vehicles (CVs). We consider heterogeneous classes of vehicles such as road and rail vehicles as well as VRUs including bicycles, scooters and motorcycles. All kinds of intersection goals, modeling, coordination architectures, scheduling policies are thoroughly discussed. Signalized and semi-autonomous intersections are assessed with respect to these parameters. We especially focus on autonomous intersection management (AIM) and categorize this section based on four major goals involving safety, efficiency, infotainment and environment. Each intersection goal provides an in-depth investigation on the corresponding literature from the aforementioned perspectives. Moreover, robustness and resiliency of IM are explored from diverse points of view encompassing sensors, information management and sharing, planning universal scheme, heterogeneous collaboration, vehicle classification, quality measurement, external factors, intersection types, localization faults, communication anomalies and channel optimization, synchronization, vehicle dynamics and model mismatch, model uncertainties, recovery, security and privacy

    Energy-Efficient and Semi-automated Truck Platooning

    Get PDF
    This open access book presents research and evaluation results of the Austrian flagship project “Connecting Austria,” illustrating the wide range of research needs and questions that arise when semi-automated truck platooning is deployed in Austria. The work presented is introduced in the context of work in similar research areas around the world. This interdisciplinary research effort considers aspects of engineering, road-vehicle and infrastructure technologies, traffic management and optimization, traffic safety, and psychology, as well as potential economic effects. The book’s broad perspective means that readers interested in current and state-of-the-art methods and techniques for the realization of semi-automated driving and with either an engineering background or with a less technical background gain a comprehensive picture of this important subject. The contributors address many questions such as: Which maneuvers does a platoon typically have to carry out, and how? How can platoons be integrated seamlessly in the traffic flow without becoming an obstacle to individual road users? What trade-offs between system information (sensors, communication effort, etc.) and efficiency are realistic? How can intersections be passed by a platoon in an intelligent fashion? Consideration of diverse disciplines and highlighting their meaning for semi-automated truck platooning, together with the highlighting of necessary research and evaluation patterns to address such a broad task scientifically, makes Energy-Efficient and Semi-automated Truck Platooning a unique contribution with methods that can be extended and adapted beyond the geographical area of the research reported
    corecore