41,905 research outputs found

    Coherency Matrix Decomposition-Based Polarimetric Persistent Scatterer Interferometry

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The rationale of polarimetric optimization techniques is to enhance the phase quality of the interferograms by combining adequately the different polarization channels available to produce an improved one. Different approaches have been proposed for polarimetric persistent scatterer interferometry (PolPSI). They range from the simple and computationally efficient BEST, where, for each pixel, the polarimetric channel with the best response in terms of phase quality is selected, to those with high-computational burden like the equal scattering mechanism (ESM) and the suboptimum scattering mechanism (SOM). BEST is fast and simple, but it does not fully exploit the potentials of polarimetry. On the other side, ESM explores all the space of solutions and finds the optimal one but with a very high-computational burden. A new PolPSI algorithm, named coherency matrix decomposition-based PolPSI (CMD-PolPSI), is proposed to achieve a compromise between phase optimization and computational cost. Its core idea is utilizing the polarimetric synthetic aperture radar (PolSAR) coherency matrix decomposition to determine the optimal polarization channel for each pixel. Three different PolSAR image sets of both full- (Barcelona) and dual-polarization (Murcia and Mexico City) are used to evaluate the performance of CMD-PolPSI. The results show that CMD-PolPSI presents better optimization results than the BEST method by using either DAD_{\mathrm{ A}} or temporal mean coherence as phase quality metrics. Compared with the ESM algorithm, CMD-PolPSI is 255 times faster but its performance is not optimal. The influence of the number of available polarization channels and pixel's resolutions on the CMD-PolPSI performance is also discussed.Peer ReviewedPostprint (author's final draft

    A temporal phase coherence estimation algorithm and its application on DInSAR pixel selection

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Pixel selection is a crucial step of all advanced Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques that have a direct impact on the quality of the final DInSAR products. In this paper, a full-resolution phase quality estimator, i.e., the temporal phase coherence (TPC), is proposed for DInSAR pixel selection. The method is able to work with both distributed scatterers (DSs) and permanent scatterers (PSs). The influence of different neighboring window sizes and types of interferograms combinations [both the single-master (SM) and the multi-master (MM)] on TPC has been studied. The relationship between TPC and phase standard deviation (STD) of the selected pixels has also been derived. Together with the classical coherence and amplitude dispersion methods, the TPC pixel selection algorithm has been tested on 37 VV polarization Radarsat-2 images of Barcelona Airport. Results show the feasibility and effectiveness of TPC pixel selection algorithm. Besides obvious improvements in the number of selected pixels, the new method shows some other advantages comparing with the other classical two. The proposed pixel selection algorithm, which presents an affordable computational cost, is easy to be implemented and incorporated into any advanced DInSAR processing chain for high-quality pixels' identification.Peer ReviewedPostprint (author's final draft

    Assimilating SAR-derived water level data into a hydraulic model: a case study

    Get PDF
    Satellite-based active microwave sensors not only provide synoptic overviews of flooded areas, but also offer an effective way to estimate spatially distributed river water levels. If rapidly produced and processed, these data can be used for updating hydraulic models in near real-time. The usefulness of such approaches with real event data sets provided by currently existing sensors has yet to be demonstrated. In this case study, a Particle Filter-based assimilation scheme is used to integrate ERS-2 SAR and ENVISAT ASAR-derived water level data into a one-dimensional (1-D) hydraulic model of the Alzette River. Two variants of the Particle Filter assimilation scheme are proposed with a global and local particle weighting procedure. The first option finds the best water stage line across all cross sections, while the second option finds the best solution at individual cross sections. The variant that is to be preferred depends on the level of confidence that is attributed to the observations or to the model. The results show that the Particle Filter-based assimilation of remote sensing-derived water elevation data provides a significant reduction in the uncertainty at the analysis step. Moreover, it is shown that the periodical updating of hydraulic models through the proposed assimilation scheme leads to an improvement of model predictions over several time steps. However, the performance of the assimilation depends on the skill of the hydraulic model and the quality of the observation data
    • …
    corecore