299 research outputs found

    BIGhybrid - A Toolkit for Simulating MapReduce on Hybrid Infrastructures

    Get PDF
    Cloud computing has increasingly been used as a platform for running large business and data processing applications. Although clouds have become highly popular, when it comes to data processing, the cost of usage is not negligible. Conversely, Desktop Grids, have been used by a plethora of projects, taking advantage of the high number of resources provided for free by volunteers. Merging cloud computing and desktop grids into hybrid infrastructure can provide a feasible low-cost solution for big data analysis. Although frameworks like MapReduce have been conceived to exploit commodity hardware, their use on hybrid infrastructure poses some challenges due to large resource heterogeneity and high churn rate. This study introduces BIGhybrid a toolkit to simulate MapReduce on hybrid environments. The main goal is to provide a framework for developers and system designers to address the issues of hybrid MapReduce. In this paper, we describe the framework which simulates the assembly of two existing middleware: BitDew- MapReduce for Desktop Grids and Hadoop-BlobSeer for Cloud Computing. Experimental results included in this work demonstrate the feasibility of our approach

    D 3 -MapReduce: Towards MapReduce for Distributed and Dynamic Data Sets

    Get PDF
    International audienceSince its introduction in 2004 by Google, MapRe-duce has become the programming model of choice for processing large data sets. Although MapReduce was originally developed for use by web enterprises in large data-centers, this technique has gained a lot of attention from the scientific community for its applicability in large parallel data analysis (including geographic, high energy physics, genomics, etc.). So far MapReduce has been mostly designed for batch processing of bulk data. The ambition of D 3-MapReduce is to extend the MapReduce programming model and propose efficient implementation of this model to: i) cope with distributed data sets, i.e. that span over multiple distributed infrastructures or stored on network of loosely connected devices; ii) cope with dynamic data sets, i.e. which dynamically change over time or can be either incomplete or partially available. In this paper, we draw the path towards this ambitious goal. Our approach leverages Data Life Cycle as a key concept to provide MapReduce for distributed and dynamic data sets on heterogeneous and distributed infrastructures. We first report on our attempts at implementing the MapReduce programming model for Hybrid Distributed Computing Infrastructures (Hybrid DCIs). We present the architecture of the prototype based on BitDew, a middleware for large scale data management, and Active Data, a programming model for data life cycle management. Second, we outline the challenges in term of methodology and present our approaches based on simulation and emulation on the Grid'5000 experimental testbed. We conduct performance evaluations and compare our prototype with Hadoop, the industry reference MapReduce implementation. We present our work in progress on dynamic data sets that has lead us to implement an incremental MapReduce framework. Finally, we discuss our achievements and outline the challenges that remain to be addressed before obtaining a complete D 3-MapReduce environment

    Big Data and Large-scale Data Analytics: Efficiency of Sustainable Scalability and Security of Centralized Clouds and Edge Deployment Architectures

    Get PDF
    One of the significant shifts of the next-generation computing technologies will certainly be in the development of Big Data (BD) deployment architectures. Apache Hadoop, the BD landmark, evolved as a widely deployed BD operating system. Its new features include federation structure and many associated frameworks, which provide Hadoop 3.x with the maturity to serve different markets. This dissertation addresses two leading issues involved in exploiting BD and large-scale data analytics realm using the Hadoop platform. Namely, (i)Scalability that directly affects the system performance and overall throughput using portable Docker containers. (ii) Security that spread the adoption of data protection practices among practitioners using access controls. An Enhanced Mapreduce Environment (EME), OPportunistic and Elastic Resource Allocation (OPERA) scheduler, BD Federation Access Broker (BDFAB), and a Secure Intelligent Transportation System (SITS) of multi-tiers architecture for data streaming to the cloud computing are the main contribution of this thesis study

    Survey and Analysis of Production Distributed Computing Infrastructures

    Full text link
    This report has two objectives. First, we describe a set of the production distributed infrastructures currently available, so that the reader has a basic understanding of them. This includes explaining why each infrastructure was created and made available and how it has succeeded and failed. The set is not complete, but we believe it is representative. Second, we describe the infrastructures in terms of their use, which is a combination of how they were designed to be used and how users have found ways to use them. Applications are often designed and created with specific infrastructures in mind, with both an appreciation of the existing capabilities provided by those infrastructures and an anticipation of their future capabilities. Here, the infrastructures we discuss were often designed and created with specific applications in mind, or at least specific types of applications. The reader should understand how the interplay between the infrastructure providers and the users leads to such usages, which we call usage modalities. These usage modalities are really abstractions that exist between the infrastructures and the applications; they influence the infrastructures by representing the applications, and they influence the ap- plications by representing the infrastructures

    Active Data: A Data-Centric Approach to Data Life-Cycle Management

    Get PDF
    International audienceData-intensive science offers new opportunities for innovation and discoveries, provided that large datasets can be handled efficiently. Data management for data-intensive science applications is challenging; requiring support for complex data life cycles, coordination across multiple sites, fault tolerance, and scalability to support tens of sites and petabytes of data. In this paper, we argue that data management for data-intensive science applications requires a fundamentally different management approach than the current ad-hoc task centric approach. We propose Active Data, a fundamentally novel paradigm for data life cycle management. Active Data follows two principles: data-centric and event-driven. We report on the Active Data programming model and its preliminary implementation, and discuss the benefits and limitations of the approach on recognized challenging data-intensive science use-cases.Les importants volumes de données produits par la science présentent de nouvelles opportunités d'innovation et de découvertes. Cependant ceci sera conditionné par notre capacité à gérer efficacement de très grands jeux de données. La gestion de données pour les applications scientifiques data-intensive présente un véritable défi~; elle requière le support de cycles de vie très complexes, la coordination de plusieurs sites, de la tolérance aux pannes et de passer à l'échelle sur des dizaines de sites avec plusieurs péta-octets de données. Dans cet article nous argumentons que la gestion des données pour les applications scientifiques data-intensive nécessite une approche fondamentalement différente de l'actuel paradigme centré sur les tâches. Nous proposons Active Data, un nouveau paradigme pour la gestion du cycle de vie des données. Active Data suit deux principes~: il est centré sur les données et à base d'événements. Nous présentons le modèle de programmation Active Data, un prototype d'implémentation et discutons des avantages et limites de notre approche à partir d'étude de cas d'applications scientifiques
    • …
    corecore