10,614 research outputs found

    Resource Cube:Multi-Virtual Resource Management for Integrated Satellite-Terrestrial Industrial IoT Networks

    Get PDF
    Industrial Internet of Things (IIoT) has found wider research, and satellite-terrestrial network (STN) can provide large-scale seamless connections for IIoT. With virtualization, we design resource cube to describe the integration and state of multi-dimensional virtual resources. To achieve higher resource utilization and smarter connections, we design a matching considered preferences (MCPR) algorithm to match IIoT nodes with service sides. The matching design considers the resource cube (MCRC) algorithm based on MCPR algorithm to lower the total system delay. In addition, in order to simplify the analysis of resource management, we adopt a layered architecture and multiple M/M/1 queuing models. We analyze the resource utilization and the total system delay for three different combinations of arrival rate and service rate of each resource cube. With MCRC algorithm, the utilization of resources is slightly reduced, while the total system delay is greatly reduced compared with MCPR algorithm. © 1967-2012 IEEE

    Satellite-MEC Integration for 6G Internet of Things: Minimal Structures, Advances, and Prospects

    Full text link
    The sixth-generation (6G) network is envisioned to shift its focus from the service requirements of human beings' to those of Internet-of-Things (IoT) devices'. Satellite communications are indispensable in 6G to support IoT devices operating in rural or disastrous areas. However, satellite networks face the inherent challenges of low data rate and large latency, which may not support computation-intensive and delay-sensitive IoT applications. Mobile Edge Computing (MEC) is a burgeoning paradigm by extending cloud computing capabilities to the network edge. By utilizing MEC technologies, the resource-limited IoT devices can access abundant computation resources with low latency, which enables the highly demanding applications while meeting strict delay requirements. Therefore, an integration of satellite communications and MEC technologies is necessary to better enable 6G IoT. In this survey, we provide a holistic overview of satellite-MEC integration. We first discuss the main challenges of the integrated satellite-MEC network and propose three minimal integrating structures. For each minimal structure, we summarize the current advances in terms of their research topics, after which we discuss the lessons learned and future directions of the minimal structure. Finally, we outline potential research issues to envision a more intelligent, more secure, and greener integrated satellite-MEC network

    Hedonic Coalition Formation for Distributed Task Allocation among Wireless Agents

    Full text link
    Autonomous wireless agents such as unmanned aerial vehicles or mobile base stations present a great potential for deployment in next-generation wireless networks. While current literature has been mainly focused on the use of agents within robotics or software applications, we propose a novel usage model for self-organizing agents suited to wireless networks. In the proposed model, a number of agents are required to collect data from several arbitrarily located tasks. Each task represents a queue of packets that require collection and subsequent wireless transmission by the agents to a central receiver. The problem is modeled as a hedonic coalition formation game between the agents and the tasks that interact in order to form disjoint coalitions. Each formed coalition is modeled as a polling system consisting of a number of agents which move between the different tasks present in the coalition, collect and transmit the packets. Within each coalition, some agents can also take the role of a relay for improving the packet success rate of the transmission. The proposed algorithm allows the tasks and the agents to take distributed decisions to join or leave a coalition, based on the achieved benefit in terms of effective throughput, and the cost in terms of delay. As a result of these decisions, the agents and tasks structure themselves into independent disjoint coalitions which constitute a Nash-stable network partition. Moreover, the proposed algorithm allows the agents and tasks to adapt the topology to environmental changes such as the arrival/removal of tasks or the mobility of the tasks. Simulation results show how the proposed algorithm improves the performance, in terms of average player (agent or task) payoff, of at least 30.26% (for a network of 5 agents with up to 25 tasks) relatively to a scheme that allocates nearby tasks equally among agents.Comment: to appear, IEEE Transactions on Mobile Computin

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    A Survey on UAV-enabled Edge Computing: Resource Management Perspective

    Full text link
    Edge computing facilitates low-latency services at the network's edge by distributing computation, communication, and storage resources within the geographic proximity of mobile and Internet-of-Things (IoT) devices. The recent advancement in Unmanned Aerial Vehicles (UAVs) technologies has opened new opportunities for edge computing in military operations, disaster response, or remote areas where traditional terrestrial networks are limited or unavailable. In such environments, UAVs can be deployed as aerial edge servers or relays to facilitate edge computing services. This form of computing is also known as UAV-enabled Edge Computing (UEC), which offers several unique benefits such as mobility, line-of-sight, flexibility, computational capability, and cost-efficiency. However, the resources on UAVs, edge servers, and IoT devices are typically very limited in the context of UEC. Efficient resource management is, therefore, a critical research challenge in UEC. In this article, we present a survey on the existing research in UEC from the resource management perspective. We identify a conceptual architecture, different types of collaborations, wireless communication models, research directions, key techniques and performance indicators for resource management in UEC. We also present a taxonomy of resource management in UEC. Finally, we identify and discuss some open research challenges that can stimulate future research directions for resource management in UEC.Comment: 36 pages, Accepted to ACM CSU
    corecore