13,629 research outputs found

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Infrastructures and services for remote sensing data production management across multiple satellite data centers

    Get PDF
    With the number of satellite sensors and date centers being increased continuously, it is becoming a trend to manage and process massive remote sensing data from multiple distributed sources. However, the combination of multiple satellite data centers for massive remote sensing (RS) data collaborative processing still faces many challenges. In order to reduce the huge amounts of data migration and improve the efficiency of multi-datacenter collaborative process, this paper presents the infrastructures and services of the data management as well as workflow management for massive remote sensing data production. A dynamic data scheduling strategy was employed to reduce the duplication of data request and data processing. And by combining the remote sensing spatial metadata repositories and Gfarm grid file system, the unified management of the raw data, intermediate products and final products were achieved in the co-processing. In addition, multi-level task order repositories and workflow templates were used to construct the production workflow automatically. With the help of specific heuristic scheduling rules, the production tasks were executed quickly. Ultimately, the Multi-datacenter Collaborative Process System (MDCPS) were implemented for large-scale remote sensing data production based on the effective management of data and workflow. As a consequence, the performance of MDCPS in experiments environment showed that those strategies could significantly enhance the efficiency of co-processing across multiple data centers
    • …
    corecore