39,787 research outputs found

    Parameterized Model-Checking for Timed-Systems with Conjunctive Guards (Extended Version)

    Full text link
    In this work we extend the Emerson and Kahlon's cutoff theorems for process skeletons with conjunctive guards to Parameterized Networks of Timed Automata, i.e. systems obtained by an \emph{apriori} unknown number of Timed Automata instantiated from a finite set U1,,UnU_1, \dots, U_n of Timed Automata templates. In this way we aim at giving a tool to universally verify software systems where an unknown number of software components (i.e. processes) interact with continuous time temporal constraints. It is often the case, indeed, that distributed algorithms show an heterogeneous nature, combining dynamic aspects with real-time aspects. In the paper we will also show how to model check a protocol that uses special variables storing identifiers of the participating processes (i.e. PIDs) in Timed Automata with conjunctive guards. This is non-trivial, since solutions to the parameterized verification problem often relies on the processes to be symmetric, i.e. indistinguishable. On the other side, many popular distributed algorithms make use of PIDs and thus cannot directly apply those solutions

    Modelamiento y especificación de sistemas distribuidos y temporizados

    Get PDF
    El aumento en la complejidad de los sistemas distribuidos y temporizados hace que ellos sean muy difícil de modelary especificar correctamente. Diferentes métodos formales son útiles para el proceso de modelado y especificaciónde estos tipos de sistemas. Los Autómatas Temporizados (AT) y los Autómatas Temporizados Distribuidos (ATD)son los modelos formales más utilizados para modelar sistemas de tiempo real y distribuidos. Lamentablemente losalgoritmos existentes para calcular la inclusión y complementación de sus lenguajes son indecidible. En este artículo,presentaremos las lógicas (Lógica Temporalizada de Eventos Distribuidos, Lógica Temporizados de Memorizaciónde Eventos) y los autómatas (Autómatas de Eventos Distribuidos, Autómatas de Memorización de Eventos),totalmente decidibles. Estos métodos fueron diseñados para modelar, especificar, estudiar el comportamiento y enespecial verificar el buen funcionamiento de los sistemas de tiempo real y distribuidos.Increasing complexity in distributed and real-time systems makes them very hard to model and specify correctly. Different formal methods are useful for the process of modeling and specification of these kinds of systems. Timed Automata (TA) and Distributed Timed Automata (DTA) are the dominant models of distributed and realtime systems. Unfortunately, their language inclusion and complementation are undecidable. In this paper, we will present logics and automata (Distributed Event Clock Automata (DECA), Memory Event Clock Automata (RMECA), Distributed Event Clock Temporal Logic (DECTL), Memory Event Clock Temporal Logic (RMECTL) fully decidable and they were designed to modeling, specifying and studying the behavior and in particular verifying the correct operation of distributed and real-time systems

    Learning algorithms for the control of routing in integrated service communication networks

    Get PDF
    There is a high degree of uncertainty regarding the nature of traffic on future integrated service networks. This uncertainty motivates the use of adaptive resource allocation policies that can take advantage of the statistical fluctuations in the traffic demands. The adaptive control mechanisms must be 'lightweight', in terms of their overheads, and scale to potentially large networks with many traffic flows. Adaptive routing is one form of adaptive resource allocation, and this thesis considers the application of Stochastic Learning Automata (SLA) for distributed, lightweight adaptive routing in future integrated service communication networks. The thesis begins with a broad critical review of the use of Artificial Intelligence (AI) techniques applied to the control of communication networks. Detailed simulation models of integrated service networks are then constructed, and learning automata based routing is compared with traditional techniques on large scale networks. Learning automata are examined for the 'Quality-of-Service' (QoS) routing problem in realistic network topologies, where flows may be routed in the network subject to multiple QoS metrics, such as bandwidth and delay. It is found that learning automata based routing gives considerable blocking probability improvements over shortest path routing, despite only using local connectivity information and a simple probabilistic updating strategy. Furthermore, automata are considered for routing in more complex environments spanning issues such as multi-rate traffic, trunk reservation, routing over multiple domains, routing in high bandwidth-delay product networks and the use of learning automata as a background learning process. Automata are also examined for routing of both 'real-time' and 'non-real-time' traffics in an integrated traffic environment, where the non-real-time traffic has access to the bandwidth 'left over' by the real-time traffic. It is found that adopting learning automata for the routing of the real-time traffic may improve the performance to both real and non-real-time traffics under certain conditions. In addition, it is found that one set of learning automata may route both traffic types satisfactorily. Automata are considered for the routing of multicast connections in receiver-oriented, dynamic environments, where receivers may join and leave the multicast sessions dynamically. Automata are shown to be able to minimise the average delay or the total cost of the resulting trees using the appropriate feedback from the environment. Automata provide a distributed solution to the dynamic multicast problem, requiring purely local connectivity information and a simple updating strategy. Finally, automata are considered for the routing of multicast connections that require QoS guarantees, again in receiver-oriented dynamic environments. It is found that the distributed application of learning automata leads to considerably lower blocking probabilities than a shortest path tree approach, due to a combination of load balancing and minimum cost behaviour

    Verification of Component-based Distributed Real-time Systems

    Get PDF
    Component-based software architectures enable reuse by separating application-specific concerns into modular components that are shielded from each other and from common concerns addressed by underlying services. Even so, concerns such as invocation rates, execution latencies, deadlines, and concurrency and scheduling semantics still cross-cut component boundaries in many real-time systems. Verification of these systems therefore must consider how composition of components relates to timing, resource utilization, and other properties. However, existing approaches only address a sub-set of the concerns that must be modeled in component-based distributed real-time systems, and a new more comprehensive approach is thus needed. To address that need, this paper offers three contributions to the state of the art in verification of component-based distributed real-time systems: (1) it introduces a formal model called real-time component automata that combines and extends interface automata and timed automata models; (2) it presents new component composition operations for single-threaded and cooperative multitasking forms of concurrency; and (3) it describes how the composed models can be combined with task locations, a scheduling model, and a communication delay model, to generate a combined representation of the application components and supporting services that can be verified by existing model checkers. These contributions are embodied in an open-source tool prototype called the Real-time Component Model Translator (RTCMT)

    Parametric Schedulability Analysis of Fixed Priority Real-Time Distributed Systems

    Get PDF
    Parametric analysis is a powerful tool for designing modern embedded systems, because it permits to explore the space of design parameters, and to check the robustness of the system with respect to variations of some uncontrollable variable. In this paper, we address the problem of parametric schedulability analysis of distributed real-time systems scheduled by fixed priority. In particular, we propose two different approaches to parametric analysis: the first one is a novel technique based on classical schedulability analysis, whereas the second approach is based on model checking of Parametric Timed Automata (PTA). The proposed analytic method extends existing sensitivity analysis for single processors to the case of a distributed system, supporting preemptive and non-preemptive scheduling, jitters and unconstrained deadlines. Parametric Timed Automata are used to model all possible behaviours of a distributed system, and therefore it is a necessary and sufficient analysis. Both techniques have been implemented in two software tools, and they have been compared with classical holistic analysis on two meaningful test cases. The results show that the analytic method provides results similar to classical holistic analysis in a very efficient way, whereas the PTA approach is slower but covers the entire space of solutions.Comment: Submitted to ECRTS 2013 (http://ecrts.eit.uni-kl.de/ecrts13

    Automatic schedule computation for distributed real-time systems using timed automata

    Get PDF
    The time-triggered architecture is becoming accepted as a means of implementing scalable, safer and more reliable solutions for distributed real-time systems. In such systems, the execution of distributed software components and the communication of messages between them take place in a fixed pattern and are scheduled in advance within a given scheduling round by a global scheduling policy. The principal obstacle in the design of time-triggered systems is the difficulty of finding the static schedule for all resources which satisfies constraints on the activities within the scheduling round, such as the meeting of deadlines. The scheduler has to consider not only the requirements on each processor but also the global requirements of system-wide behaviour including messages transmitted on networks. Finding an efficient way of building an appropriate global schedule for a given system is a major research challenge. This thesis proposes a novel approach to designing time-triggered schedules which is radically different from existing mathematical methods or algorithms for schedule generation. It entails the construction of timed automata to model the arrival and execution of software tasks and inter-task message communication for a system; the behaviour of an entire distributed system is thus a parallel composition of these timed automata models. A job comprises a sequence of tasks and messages; this expresses a system-wide transaction which may be distributed over a system of processors and networks. The job is formalized by a timed automata based on the principle that a task or message can be modelled by finite states and a clock variable. Temporal logic properties are formed to express constraints on the behaviour of the system components such as precedence relationships between tasks and messages and adherence to deadlines. Schedules are computed by formally verifying that these properties hold for an evolution of the system; a successful schedule is simply a trace generated by the verifier, in this case the UPPAAL model-checking tool has been employed to perform the behaviour verification. This approach guarantees to generate a practical schedule if one exists and will fail to construct any schedule if none exists. A prototype toolset has been developed to automate the proposed approach to create of timed automata models, undertake the analysis, extract schedules from traces and visualize the generated schedules. Two case studies, one of a cruise control system, the other a manufacturing cell system, are presented to demonstrate the applicability and usability of the approach and the application of the toolset. Finally, further constraints are considered in order to yield schedules with limited jitter, increased efficiency and system-wide properties

    Modeling and Verification for Timing Satisfaction of Fault-Tolerant Systems with Finiteness

    Full text link
    The increasing use of model-based tools enables further use of formal verification techniques in the context of distributed real-time systems. To avoid state explosion, it is necessary to construct verification models that focus on the aspects under consideration. In this paper, we discuss how we construct a verification model for timing analysis in distributed real-time systems. We (1) give observations concerning restrictions of timed automata to model these systems, (2) formulate mathematical representations on how to perform model-to-model transformation to derive verification models from system models, and (3) propose some theoretical criteria how to reduce the model size. The latter is in particular important, as for the verification of complex systems, an efficient model reflecting the properties of the system under consideration is equally important to the verification algorithm itself. Finally, we present an extension of the model-based development tool FTOS, designed to develop fault-tolerant systems, to demonstrate %the benefits of our approach.Comment: 1. Appear in the 13-th IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT'09). 2. Compared to the DS-RT version, we add motivations for editing automata, and footnote that the sketch of editing algo is only applicable in our job-processing element to avoid ambiguity (because actions are chained

    Validation of distributed periodic real-time systems using CAN protocol with finite automata

    No full text
    International audience‘In a previous work, we have defined a temporal model based on regular languages to validate periodic real-time systems: the feasability decisional process is expressed by means of algebraic operations on languages, such as intersection, Hadamard product, and language center computing. Here, we describe how this model can be used to validate periodic distributed real-time systems. We base this description on the example of the CAN network protocol

    Pattern Matching in Link Streams: a Token-based Approach

    Get PDF
    International audienceLink streams model the dynamics of interactions in complex distributed systems as sequences of links (interactions) occurring at a given time. Detecting patterns in such sequences is crucial for many applications but it raises several challenges. In particular, there is no generic approach for the specification and detection of link stream patterns in a way similar to regular expressions and automata for text patterns. To address this, we propose a novel automata framework integrating both timed constraints and finite memory together with a recognition algorithm. The algorithm uses structures similar to tokens in high-level Petri nets and includes non-determinism and concurrency. We illustrate the use of our framework in real-world cases and evaluate its practical performances
    corecore