646 research outputs found

    Diffusion Adaptation Strategies for Distributed Estimation over Gaussian Markov Random Fields

    Full text link
    The aim of this paper is to propose diffusion strategies for distributed estimation over adaptive networks, assuming the presence of spatially correlated measurements distributed according to a Gaussian Markov random field (GMRF) model. The proposed methods incorporate prior information about the statistical dependency among observations, while at the same time processing data in real-time and in a fully decentralized manner. A detailed mean-square analysis is carried out in order to prove stability and evaluate the steady-state performance of the proposed strategies. Finally, we also illustrate how the proposed techniques can be easily extended in order to incorporate thresholding operators for sparsity recovery applications. Numerical results show the potential advantages of using such techniques for distributed learning in adaptive networks deployed over GMRF.Comment: Submitted to IEEE Transactions on Signal Processing. arXiv admin note: text overlap with arXiv:1206.309

    Distributed Diffusion-Based LMS for Node-Specific Adaptive Parameter Estimation

    Full text link
    A distributed adaptive algorithm is proposed to solve a node-specific parameter estimation problem where nodes are interested in estimating parameters of local interest, parameters of common interest to a subset of nodes and parameters of global interest to the whole network. To address the different node-specific parameter estimation problems, this novel algorithm relies on a diffusion-based implementation of different Least Mean Squares (LMS) algorithms, each associated with the estimation of a specific set of local, common or global parameters. Coupled with the estimation of the different sets of parameters, the implementation of each LMS algorithm is only undertaken by the nodes of the network interested in a specific set of local, common or global parameters. The study of convergence in the mean sense reveals that the proposed algorithm is asymptotically unbiased. Moreover, a spatial-temporal energy conservation relation is provided to evaluate the steady-state performance at each node in the mean-square sense. Finally, the theoretical results and the effectiveness of the proposed technique are validated through computer simulations in the context of cooperative spectrum sensing in Cognitive Radio networks.Comment: 13 pages, 6 figure

    Cooperative Filtering and Parameter Identification for Advection-Diffusion Processes Using a Mobile Sensor Network

    Get PDF
    This article presents an online parameter identification scheme for advection-diffusion processes using data collected by a mobile sensor network. The advection-diffusion equation is incorporated into the information dynamics associated with the trajectories of the mobile sensors. A constrained cooperative Kalman filter is developed to provide estimates of the field values and gradients along the trajectories of the mobile sensors so that the temporal variations in the field values can be estimated. This leads to a co-design scheme for state estimation and parameter identification for advection-diffusion processes that is different from comparable schemes using sensors installed at fixed spatial locations. Using state estimates from the constrained cooperative Kalman filter, a recursive least-square (RLS) algorithm is designed to estimate unknown model parameters of the advection-diffusion processes. Theoretical justifications are provided for the convergence of the proposed cooperative Kalman filter by deriving a set of sufficient conditions regarding the formation shape and the motion of the mobile sensor network. Simulation and experimental results show satisfactory performance and demonstrate the robustness of the algorithm under realistic uncertainties and disturbances

    Distributed Detection and Estimation in Wireless Sensor Networks

    Full text link
    In this article we consider the problems of distributed detection and estimation in wireless sensor networks. In the first part, we provide a general framework aimed to show how an efficient design of a sensor network requires a joint organization of in-network processing and communication. Then, we recall the basic features of consensus algorithm, which is a basic tool to reach globally optimal decisions through a distributed approach. The main part of the paper starts addressing the distributed estimation problem. We show first an entirely decentralized approach, where observations and estimations are performed without the intervention of a fusion center. Then, we consider the case where the estimation is performed at a fusion center, showing how to allocate quantization bits and transmit powers in the links between the nodes and the fusion center, in order to accommodate the requirement on the maximum estimation variance, under a constraint on the global transmit power. We extend the approach to the detection problem. Also in this case, we consider the distributed approach, where every node can achieve a globally optimal decision, and the case where the decision is taken at a central node. In the latter case, we show how to allocate coding bits and transmit power in order to maximize the detection probability, under constraints on the false alarm rate and the global transmit power. Then, we generalize consensus algorithms illustrating a distributed procedure that converges to the projection of the observation vector onto a signal subspace. We then address the issue of energy consumption in sensor networks, thus showing how to optimize the network topology in order to minimize the energy necessary to achieve a global consensus. Finally, we address the problem of matching the topology of the network to the graph describing the statistical dependencies among the observed variables.Comment: 92 pages, 24 figures. To appear in E-Reference Signal Processing, R. Chellapa and S. Theodoridis, Eds., Elsevier, 201

    Deep Reinforcement Learning based Path-Planning for Multi-Agent Systems in Advection-Diffusion Field Reconstruction Tasks

    Get PDF
    Many environmental processes can be represented mathematically using spatial-temporal varying partial-differential equations. Timely estimation and prediction of processes such as wildfires is critical for disaster management response, but is difficult to accomplish without the availability of a dense network of stationary sensors. In this work, we propose a deep reinforcement learning-based real-time path-planning algorithm for mobile sensor networks traveling in a formation through a spatial-temporal varying advection-diffusion field for the task of field reconstruction. A deep Q-network (DQN) agent is trained on simulated advection-diffusion fields to direct the mobile sensor network to travel along information-rich trajectories. The field measurements made by the mobile sensor network along their trajectories enable identification of field advection parameters, which are required for field reconstruction. A cooperative Kalman filter developed in previous works is employed to receive estimates of the field values and gradients, which are essential for reconstruction as well as for the estimation of the diffusion parameter. A mechanism is provided that encourages exploration in the field domain once a stationary state is reached, which allows the algorithm to identify other information-rich trajectories that may exist in the field improving reconstruction performance significantly. Two simulation environments of different fidelities are provided to test the feasibility of the proposed algorithm. The low-fidelity simulation environment is used for training of the DQN agent. The high-fidelity simulation environment is based on Robot Operating System (ROS) and simulates real robots. We provide results of running sample test episodes in both environments which demonstrate the effectiveness and feasibility of the proposed algorithm
    • …
    corecore