21,897 research outputs found

    Balanced Allocations and Double Hashing

    Full text link
    Double hashing has recently found more common usage in schemes that use multiple hash functions. In double hashing, for an item xx, one generates two hash values f(x)f(x) and g(x)g(x), and then uses combinations (f(x)+kg(x))modn(f(x) +k g(x)) \bmod n for k=0,1,2,...k=0,1,2,... to generate multiple hash values from the initial two. We first perform an empirical study showing that, surprisingly, the performance difference between double hashing and fully random hashing appears negligible in the standard balanced allocation paradigm, where each item is placed in the least loaded of dd choices, as well as several related variants. We then provide theoretical results that explain the behavior of double hashing in this context.Comment: Further updated, small improvements/typos fixe

    Asymptotic Analysis of Plausible Tree Hash Modes for SHA-3

    Get PDF
    Discussions about the choice of a tree hash mode of operation for a standardization have recently been undertaken. It appears that a single tree mode cannot address adequately all possible uses and specifications of a system. In this paper, we review the tree modes which have been proposed, we discuss their problems and propose remedies. We make the reasonable assumption that communicating systems have different specifications and that software applications are of different types (securing stored content or live-streamed content). Finally, we propose new modes of operation that address the resource usage problem for the three most representative categories of devices and we analyse their asymptotic behavior

    Parallel Recursive State Compression for Free

    Get PDF
    This paper focuses on reducing memory usage in enumerative model checking, while maintaining the multi-core scalability obtained in earlier work. We present a tree-based multi-core compression method, which works by leveraging sharing among sub-vectors of state vectors. An algorithmic analysis of both worst-case and optimal compression ratios shows the potential to compress even large states to a small constant on average (8 bytes). Our experiments demonstrate that this holds up in practice: the median compression ratio of 279 measured experiments is within 17% of the optimum for tree compression, and five times better than the median compression ratio of SPIN's COLLAPSE compression. Our algorithms are implemented in the LTSmin tool, and our experiments show that for model checking, multi-core tree compression pays its own way: it comes virtually without overhead compared to the fastest hash table-based methods.Comment: 19 page

    Parallel Searching for a First Solution

    Get PDF
    A parallel algorithm for conducting a search for a first solution to the problem of generating minimal perfect hash functions is presented. A message-based distributed memory computer is assumed as a model for parallel computations. A data structure, called reverse trie (r-trie), was devised to carry out the search. The algorithm was implemented on a transputer network. The experiments showed that the algorithm exhibits a consistent and almost linear speed-up. The r-trie structure proved to be highly memory efficient

    Keeping Authorities "Honest or Bust" with Decentralized Witness Cosigning

    Get PDF
    The secret keys of critical network authorities - such as time, name, certificate, and software update services - represent high-value targets for hackers, criminals, and spy agencies wishing to use these keys secretly to compromise other hosts. To protect authorities and their clients proactively from undetected exploits and misuse, we introduce CoSi, a scalable witness cosigning protocol ensuring that every authoritative statement is validated and publicly logged by a diverse group of witnesses before any client will accept it. A statement S collectively signed by W witnesses assures clients that S has been seen, and not immediately found erroneous, by those W observers. Even if S is compromised in a fashion not readily detectable by the witnesses, CoSi still guarantees S's exposure to public scrutiny, forcing secrecy-minded attackers to risk that the compromise will soon be detected by one of the W witnesses. Because clients can verify collective signatures efficiently without communication, CoSi protects clients' privacy, and offers the first transparency mechanism effective against persistent man-in-the-middle attackers who control a victim's Internet access, the authority's secret key, and several witnesses' secret keys. CoSi builds on existing cryptographic multisignature methods, scaling them to support thousands of witnesses via signature aggregation over efficient communication trees. A working prototype demonstrates CoSi in the context of timestamping and logging authorities, enabling groups of over 8,000 distributed witnesses to cosign authoritative statements in under two seconds.Comment: 20 pages, 7 figure

    BaseFs - Basically Acailable, Soft State, Eventually Consistent Filesystem for Cluster Management

    Get PDF
    A peer-to-peer distributed filesystem for community cloud management. https://github.com/glic3rinu/basef
    corecore