625 research outputs found

    Transient Stability Hierarchical Control in Multimachine Power Systems

    Get PDF
    The authors present the optimal transient stability control problem in a hierarchical structure for multimachine power systems. The two-level structure retains the local closed-loop controls, thereby easing its implementation on existing systems. The formulation accounts for nonlinearities and interconnections, and the optimization of the system transient performance is obtained with less computational effort. Since the computations are distributed among the many local feedback subsystems, the storage and solution times are considerably less than those required by a single overall centralized controller. This advantage becomes much stronger as the system size increases. For illustration purposes, this technique was applied successfully to a four-machine syste

    Stability and Control of Power Systems using Vector Lyapunov Functions and Sum-of-Squares Methods

    Full text link
    Recently sum-of-squares (SOS) based methods have been used for the stability analysis and control synthesis of polynomial dynamical systems. This analysis framework was also extended to non-polynomial dynamical systems, including power systems, using an algebraic reformulation technique that recasts the system's dynamics into a set of polynomial differential algebraic equations. Nevertheless, for large scale dynamical systems this method becomes inapplicable due to its computational complexity. For this reason we develop a subsystem based stability analysis approach using vector Lyapunov functions and introduce a parallel and scalable algorithm to infer the stability of the interconnected system with the help of the subsystem Lyapunov functions. Furthermore, we design adaptive and distributed control laws that guarantee asymptotic stability under a given external disturbance. Finally, we apply this algorithm for the stability analysis and control synthesis of a network preserving power system.Comment: to appear at the 14th annual European Control Conferenc

    Synchronization stability of lossy and uncertain power grids

    Get PDF
    Direct energy methods have been extensively developed for the transient stability analysis and contingency screening of power grids. However, there is no analytical energy functions proposed for power grids with losses, which are normal in practice. This paper applies the recently introduced Lyapunov Functions Family approach to the certification of synchronization stability for lossy power grids. This technique does not rely on the global decreasing of the Lyapunov function as in the direct energy methods, and thus is possible to deal with the lossy power grids. We show that this approach is also applicable to uncertain power grids where the stable equilibrium is unknown due to possible uncertainties in system parameters. We formulate this new control problem and introduce techniques to certify the robust stability of a given initial state with respect to a set of equilibria

    Passivation controller design for turbo-generators based on generalised Hamiltonian system theory

    Get PDF
    A method of pre-feedback to formulate the generalised forced Hamiltonian system model for speed governor control systems is proposed. Furthermore, passivation controllers are designed based on the scheme of Hamiltonian structure for single machne infinite bus and multimachine power systems. In particular, in the case of multimachine systems, all the variables in the control law are only relevant to the state variables of the local generator, which means that a decentralised controller is achieved. Simulation results of a four-machine system show that the controller can enhance power system transient stability

    Nonlinear Disturbance Attenuation Controller for Turbo-Generators in Power Systems via Recursive Design

    Get PDF

    Transient stabilization of multimachine power systems with nontrivial transfer conductances

    No full text
    Published versio

    A Recursive Least-Squares Approach with Memorizing Factor for Deriving Dynamic Equivalents of Power Systems

    Get PDF
    In this research, a two-stage identification-based approach is proposed to obtain a two-machine equivalent (TME) system of an interconnected power system for transient stability studies. To estimate the parameters of the equivalent system, a three-phase fault is applied near and/or at the bus of a local machine in the original multimachine system. The electrical parameters of the equivalent system are calculated in the first stage by equating the active and reactive powers of the local machine in both the original and the predefined equivalent systems. The mechanical parameters are estimated in the second stage by using a recursive least-squares estimation (RLSE) technique with a factor called “memorizing factor”. The approach is demonstrated on New England 10-machine 39-bus system, and its accuracy and efficiency are verified by computer simulation in MATLAB software. The results obtained from the TME system agree well with those obtained from the original multimachine system

    Determination of Generator Steady State Stability Limit for Multimachine System based on Network Losses Concept

    Get PDF
    In the multimachine circumstances, it is difficult to analyze the steady state stability of each generator. In previous research, analysis of the steady state stability limit has been carried out but only look at the stability of the overall system. Therefore, to analyze the stability of each generator, the multimachine system must be changed into a Single Machine to Infinite Bus (SMIB) system by collecting all the loads into one central load in the infinite bus. The method to change from the multimachine system to SMIB system is presented in this paper. The multimachine system is converted into an equivalent impedance (req and xeq) and an equivalent load based on losses concept. After req and xeq is calculated, then by using steady state stability limit concept, the value of the maximum generation of each generator units can be determined. By means of maximum generation is the maximum output power limit that can be generated without causing unstability. ETAP simulation is used to validate the calculation results of the proposed method. The method was applied to units generator in Java Bali system 500 k

    Investigation of the Adaptability of Transient Stability Assessment Methods to Real-Time Operation

    Get PDF
    peer reviewedIn this paper, an investigation of the adaptability of available transient stability assessment methods to real-time operation and their real-time performance is carried out. Two approaches based on Lyapunov’s method and the equal area criterion are analyzed. The results allow to determine the runtime of each method with respect to the number of inputs. Furthermore, it allows to identify, which method is preferable in case of changes in the power system such as the integration of distributed power resources (DER). A comparison of the performance of the analyzed methods leads to the suggestion that matrix reduction and time domain simulation are the most critical operations
    corecore