9,589 research outputs found

    A Reduction of the Elastic Net to Support Vector Machines with an Application to GPU Computing

    Full text link
    The past years have witnessed many dedicated open-source projects that built and maintain implementations of Support Vector Machines (SVM), parallelized for GPU, multi-core CPUs and distributed systems. Up to this point, no comparable effort has been made to parallelize the Elastic Net, despite its popularity in many high impact applications, including genetics, neuroscience and systems biology. The first contribution in this paper is of theoretical nature. We establish a tight link between two seemingly different algorithms and prove that Elastic Net regression can be reduced to SVM with squared hinge loss classification. Our second contribution is to derive a practical algorithm based on this reduction. The reduction enables us to utilize prior efforts in speeding up and parallelizing SVMs to obtain a highly optimized and parallel solver for the Elastic Net and Lasso. With a simple wrapper, consisting of only 11 lines of MATLAB code, we obtain an Elastic Net implementation that naturally utilizes GPU and multi-core CPUs. We demonstrate on twelve real world data sets, that our algorithm yields identical results as the popular (and highly optimized) glmnet implementation but is one or several orders of magnitude faster.Comment: 10 page

    Multi-class SVMs: From Tighter Data-Dependent Generalization Bounds to Novel Algorithms

    Full text link
    This paper studies the generalization performance of multi-class classification algorithms, for which we obtain, for the first time, a data-dependent generalization error bound with a logarithmic dependence on the class size, substantially improving the state-of-the-art linear dependence in the existing data-dependent generalization analysis. The theoretical analysis motivates us to introduce a new multi-class classification machine based on p\ell_p-norm regularization, where the parameter pp controls the complexity of the corresponding bounds. We derive an efficient optimization algorithm based on Fenchel duality theory. Benchmarks on several real-world datasets show that the proposed algorithm can achieve significant accuracy gains over the state of the art

    An ontology enhanced parallel SVM for scalable spam filter training

    Get PDF
    This is the post-print version of the final paper published in Neurocomputing. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Spam, under a variety of shapes and forms, continues to inflict increased damage. Varying approaches including Support Vector Machine (SVM) techniques have been proposed for spam filter training and classification. However, SVM training is a computationally intensive process. This paper presents a MapReduce based parallel SVM algorithm for scalable spam filter training. By distributing, processing and optimizing the subsets of the training data across multiple participating computer nodes, the parallel SVM reduces the training time significantly. Ontology semantics are employed to minimize the impact of accuracy degradation when distributing the training data among a number of SVM classifiers. Experimental results show that ontology based augmentation improves the accuracy level of the parallel SVM beyond the original sequential counterpart
    corecore