1,341 research outputs found

    Efficient Belief Propagation for Perception and Manipulation in Clutter

    Full text link
    Autonomous service robots are required to perform tasks in common human indoor environments. To achieve goals associated with these tasks, the robot should continually perceive, reason its environment, and plan to manipulate objects, which we term as goal-directed manipulation. Perception remains the most challenging aspect of all stages, as common indoor environments typically pose problems in recognizing objects under inherent occlusions with physical interactions among themselves. Despite recent progress in the field of robot perception, accommodating perceptual uncertainty due to partial observations remains challenging and needs to be addressed to achieve the desired autonomy. In this dissertation, we address the problem of perception under uncertainty for robot manipulation in cluttered environments using generative inference methods. Specifically, we aim to enable robots to perceive partially observable environments by maintaining an approximate probability distribution as a belief over possible scene hypotheses. This belief representation captures uncertainty resulting from inter-object occlusions and physical interactions, which are inherently present in clutterred indoor environments. The research efforts presented in this thesis are towards developing appropriate state representations and inference techniques to generate and maintain such belief over contextually plausible scene states. We focus on providing the following features to generative inference while addressing the challenges due to occlusions: 1) generating and maintaining plausible scene hypotheses, 2) reducing the inference search space that typically grows exponentially with respect to the number of objects in a scene, 3) preserving scene hypotheses over continual observations. To generate and maintain plausible scene hypotheses, we propose physics informed scene estimation methods that combine a Newtonian physics engine within a particle based generative inference framework. The proposed variants of our method with and without a Monte Carlo step showed promising results on generating and maintaining plausible hypotheses under complete occlusions. We show that estimating such scenarios would not be possible by the commonly adopted 3D registration methods without the notion of a physical context that our method provides. To scale up the context informed inference to accommodate a larger number of objects, we describe a factorization of scene state into object and object-parts to perform collaborative particle-based inference. This resulted in the Pull Message Passing for Nonparametric Belief Propagation (PMPNBP) algorithm that caters to the demands of the high-dimensional multimodal nature of cluttered scenes while being computationally tractable. We demonstrate that PMPNBP is orders of magnitude faster than the state-of-the-art Nonparametric Belief Propagation method. Additionally, we show that PMPNBP successfully estimates poses of articulated objects under various simulated occlusion scenarios. To extend our PMPNBP algorithm for tracking object states over continuous observations, we explore ways to propose and preserve hypotheses effectively over time. This resulted in an augmentation-selection method, where hypotheses are drawn from various proposals followed by the selection of a subset using PMPNBP that explained the current state of the objects. We discuss and analyze our augmentation-selection method with its counterparts in belief propagation literature. Furthermore, we develop an inference pipeline for pose estimation and tracking of articulated objects in clutter. In this pipeline, the message passing module with the augmentation-selection method is informed by segmentation heatmaps from a trained neural network. In our experiments, we show that our proposed pipeline can effectively maintain belief and track articulated objects over a sequence of observations under occlusion.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163159/1/kdesingh_1.pd

    A graphical model based solution to the facial feature point tracking problem

    Get PDF
    In this paper a facial feature point tracker that is motivated by applications such as human-computer interfaces and facial expression analysis systems is proposed. The proposed tracker is based on a graphical model framework. The facial features are tracked through video streams by incorporating statistical relations in time as well as spatial relations between feature points. By exploiting the spatial relationships between feature points, the proposed method provides robustness in real-world conditions such as arbitrary head movements and occlusions. A Gabor feature-based occlusion detector is developed and used to handle occlusions. The performance of the proposed tracker has been evaluated on real video data under various conditions including occluded facial gestures and head movements. It is also compared to two popular methods, one based on Kalman filtering exploiting temporal relations, and the other based on active appearance models (AAM). Improvements provided by the proposed approach are demonstrated through both visual displays and quantitative analysis

    Graphical models for visual object recognition and tracking

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 277-301).We develop statistical methods which allow effective visual detection, categorization, and tracking of objects in complex scenes. Such computer vision systems must be robust to wide variations in object appearance, the often small size of training databases, and ambiguities induced by articulated or partially occluded objects. Graphical models provide a powerful framework for encoding the statistical structure of visual scenes, and developing corresponding learning and inference algorithms. In this thesis, we describe several models which integrate graphical representations with nonparametric statistical methods. This approach leads to inference algorithms which tractably recover high-dimensional, continuous object pose variations, and learning procedures which transfer knowledge among related recognition tasks. Motivated by visual tracking problems, we first develop a nonparametric extension of the belief propagation (BP) algorithm. Using Monte Carlo methods, we provide general procedures for recursively updating particle-based approximations of continuous sufficient statistics. Efficient multiscale sampling methods then allow this nonparametric BP algorithm to be flexibly adapted to many different applications.(cont.) As a particular example, we consider a graphical model describing the hand's three-dimensional (3D) structure, kinematics, and dynamics. This graph encodes global hand pose via the 3D position and orientation of several rigid components, and thus exposes local structure in a high-dimensional articulated model. Applying nonparametric BP, we recover a hand tracking algorithm which is robust to outliers and local visual ambiguities. Via a set of latent occupancy masks, we also extend our approach to consistently infer occlusion events in a distributed fashion. In the second half of this thesis, we develop methods for learning hierarchical models of objects, the parts composing them, and the scenes surrounding them. Our approach couples topic models originally developed for text analysis with spatial transformations, and thus consistently accounts for geometric constraints. By building integrated scene models, we may discover contextual relationships, and better exploit partially labeled training images. We first consider images of isolated objects, and show that sharing parts among object categories improves accuracy when learning from few examples.(cont.) Turning to multiple object scenes, we propose nonparametric models which use Dirichlet processes to automatically learn the number of parts underlying each object category, and objects composing each scene. Adapting these transformed Dirichlet processes to images taken with a binocular stereo camera, we learn integrated, 3D models of object geometry and appearance. This leads to a Monte Carlo algorithm which automatically infers 3D scene structure from the predictable geometry of known object categories.by Erik B. Sudderth.Ph.D

    Nonparametric Belief Propagation and Facial Appearance Estimation

    Get PDF
    In many applications of graphical models arising in computer vision, the hidden variables of interest are most naturally specified by continuous, non-Gaussian distributions. There exist inference algorithms for discrete approximations to these continuous distributions, but for the high-dimensional variables typically of interest, discrete inference becomes infeasible. Stochastic methods such as particle filters provide an appealing alternative. However, existing techniques fail to exploit the rich structure of the graphical models describing many vision problems. Drawing on ideas from regularized particle filters and belief propagation (BP), this paper develops a nonparametric belief propagation (NBP) algorithm applicable to general graphs. Each NBP iteration uses an efficient sampling procedure to update kernel-based approximations to the true, continuous likelihoods. The algorithm can accomodate an extremely broad class of potential functions, including nonparametric representations. Thus, NBP extends particle filtering methods to the more general vision problems that graphical models can describe. We apply the NBP algorithm to infer component interrelationships in a parts-based face model, allowing location and reconstruction of occluded features

    Single and multiple object tracking using a multi-feature joint sparse representation

    Get PDF
    In this paper, we propose a tracking algorithm based on a multi-feature joint sparse representation. The templates for the sparse representation can include pixel values, textures, and edges. In the multi-feature joint optimization, noise or occlusion is dealt with using a set of trivial templates. A sparse weight constraint is introduced to dynamically select the relevant templates from the full set of templates. A variance ratio measure is adopted to adaptively adjust the weights of different features. The multi-feature template set is updated adaptively. We further propose an algorithm for tracking multi-objects with occlusion handling based on the multi-feature joint sparse reconstruction. The observation model based on sparse reconstruction automatically focuses on the visible parts of an occluded object by using the information in the trivial templates. The multi-object tracking is simplified into a joint Bayesian inference. The experimental results show the superiority of our algorithm over several state-of-the-art tracking algorithms

    Human robot interaction in a crowded environment

    No full text
    Human Robot Interaction (HRI) is the primary means of establishing natural and affective communication between humans and robots. HRI enables robots to act in a way similar to humans in order to assist in activities that are considered to be laborious, unsafe, or repetitive. Vision based human robot interaction is a major component of HRI, with which visual information is used to interpret how human interaction takes place. Common tasks of HRI include finding pre-trained static or dynamic gestures in an image, which involves localising different key parts of the human body such as the face and hands. This information is subsequently used to extract different gestures. After the initial detection process, the robot is required to comprehend the underlying meaning of these gestures [3]. Thus far, most gesture recognition systems can only detect gestures and identify a person in relatively static environments. This is not realistic for practical applications as difficulties may arise from people‟s movements and changing illumination conditions. Another issue to consider is that of identifying the commanding person in a crowded scene, which is important for interpreting the navigation commands. To this end, it is necessary to associate the gesture to the correct person and automatic reasoning is required to extract the most probable location of the person who has initiated the gesture. In this thesis, we have proposed a practical framework for addressing the above issues. It attempts to achieve a coarse level understanding about a given environment before engaging in active communication. This includes recognizing human robot interaction, where a person has the intention to communicate with the robot. In this regard, it is necessary to differentiate if people present are engaged with each other or their surrounding environment. The basic task is to detect and reason about the environmental context and different interactions so as to respond accordingly. For example, if individuals are engaged in conversation, the robot should realize it is best not to disturb or, if an individual is receptive to the robot‟s interaction, it may approach the person. Finally, if the user is moving in the environment, it can analyse further to understand if any help can be offered in assisting this user. The method proposed in this thesis combines multiple visual cues in a Bayesian framework to identify people in a scene and determine potential intentions. For improving system performance, contextual feedback is used, which allows the Bayesian network to evolve and adjust itself according to the surrounding environment. The results achieved demonstrate the effectiveness of the technique in dealing with human-robot interaction in a relatively crowded environment [7]
    corecore