538,749 research outputs found

    WIDE - A Distributed Architecture for Workflow Management

    Get PDF
    This paper presents the distributed architecture of the WIDE workflow management system. We show how distribution and scalability are obtained by the use of a distributed object model, a client/server architecture, and a distributed workflow server architecture. Specific attention is paid to the extended transaction support and active rule support subarchitectures

    Adaptive object management for distributed systems

    Get PDF
    This thesis describes an architecture supporting the management of pluggable software components and evaluates it against the requirement for an enterprise integration platform for the manufacturing and petrochemical industries. In a distributed environment, we need mechanisms to manage objects and their interactions. At the least, we must be able to create objects in different processes on different nodes; we must be able to link them together so that they can pass messages to each other across the network; and we must deliver their messages in a timely and reliable manner. Object based environments which support these services already exist, for example ANSAware(ANSA, 1989), DEC's Objectbroker(ACA,1992), Iona's Orbix(Orbix,1994)Yet such environments provide limited support for composing applications from pluggable components. Pluggability is the ability to install and configure a component into an environment dynamically when the component is used, without specifying static dependencies between components when they are produced. Pluggability is supported to a degree by dynamic binding. Components may be programmed to import references to other components and to explore their interfaces at runtime, without using static type dependencies. Yet thus overloads the component with the responsibility to explore bindings. What is still generally missing is an efficient general-purpose binding model for managing bindings between independently produced components. In addition, existing environments provide no clear strategy for dealing with fine grained objects. The overhead of runtime binding and remote messaging will severely reduce performance where there are a lot of objects with complex patterns of interaction. We need an adaptive approach to managing configurations of pluggable components according to the needs and constraints of the environment. Management is made difficult by embedding bindings in component implementations and by relying on strong typing as the only means of verifying and validating bindings. To solve these problems we have built a set of configuration tools on top of an existing distributed support environment. Specification tools facilitate the construction of independent pluggable components. Visual composition tools facilitate the configuration of components into applications and the verification of composite behaviours. A configuration model is constructed which maintains the environmental state. Adaptive management is made possible by changing the management policy according to this state. Such policy changes affect the location of objects, their bindings, and the choice of messaging system

    TINA components used for service dubscription and deployment

    Get PDF
    This paper presents a TINA-based services platform for deploying and provisioning of services, especially services supporting dynamic communication processes between individuals, such as required for distributed teamwork. The paper gives an overview of the platform architecture, and discusses two topics in more detail: (1) the Distributed Software Component (DSC) framework, which considerably facilitates the development of components from which the platform is built, and (2) some specific components of the platform, which play a crucial role in service management and deployment. In addition, a brief\ud evaluation of CORBA (Common Object Request Broker Architecture) ORBs (Object Request Broker) is given, based on the experience of using CORBA as the underlying distributed processing environment for the platform

    Management of object-oriented action-based distributed programs

    Get PDF
    Phd ThesisThis thesis addresses the problem of managing the runtime behaviour of distributed programs. The thesis of this work is that management is fundamentally an information processing activity and that the object model, as applied to actionbased distributed systems and database systems, is an appropriate representation of the management information. In this approach, the basic concepts of classes, objects, relationships, and atomic transition systems are used to form object models of distributed programs. Distributed programs are collections of objects whose methods are structured using atomic actions, i.e., atomic transactions. Object models are formed of two submodels, each representing a fundamental aspect of a distributed program. The structural submodel represents a static perspective of the distributed program, and the control submodel represents a dynamic perspective of it. Structural models represent the program's objects, classes and their relationships. Control models represent the program's object states, events, guards and actions-a transition system. Resolution of queries on the distributed program's object model enable the management system to control certain activities of distributed programs. At a different level of abstraction, the distributed program can be seen as a reactive system where two subprograms interact: an application program and a management program; they interact only through sensors and actuators. Sensors are methods used to probe an object's state and actuators are methods used to change an object's state. The management program is capable to prod the application program into action by activating sensors and actuators available at the interface of the application program. Actions are determined by management policies that are encoded in the management program. This way of structuring the management system encourages a clear modularization of application and management distributed programs, allowing better separation of concerns. Managemental concerns can be dealt with by the management program, functional concerns can be assigned to the application program. The object-oriented action-based computational model adopted by the management system provides a natural framework for the implementation of faulttolerant distributed programs. Object orientation provides modularity and extensibility through object encapsulation. Atomic actions guarantee the consistency of the objects of the distributed program despite concurrency and failures. Replication of the distributed program provides increased fault-tolerance by guaranteeing the consistent progress of the computation, even though some of the replicated objects can fail. A prototype management system based on the management theory proposed above has been implemented atop Arjuna; an object-oriented programming system which provides a set of tools for constructing fault-tolerant distributed programs. The management system is composed of two subsystems: Stabilis, a management system for structural information, and Vigil, a management system for control information. Example applications have been implemented to illustrate the use of the management system and gather experimental evidence to give support to the thesis.CNPq (Consellho Nacional de Desenvolvimento Cientifico e Tecnol6gico, Brazil): BROADCAST (Basic Research On Advanced Distributed Computing: from Algorithms to SysTems)

    PlinyCompute: A Platform for High-Performance, Distributed, Data-Intensive Tool Development

    Full text link
    This paper describes PlinyCompute, a system for development of high-performance, data-intensive, distributed computing tools and libraries. In the large, PlinyCompute presents the programmer with a very high-level, declarative interface, relying on automatic, relational-database style optimization to figure out how to stage distributed computations. However, in the small, PlinyCompute presents the capable systems programmer with a persistent object data model and API (the "PC object model") and associated memory management system that has been designed from the ground-up for high performance, distributed, data-intensive computing. This contrasts with most other Big Data systems, which are constructed on top of the Java Virtual Machine (JVM), and hence must at least partially cede performance-critical concerns such as memory management (including layout and de/allocation) and virtual method/function dispatch to the JVM. This hybrid approach---declarative in the large, trusting the programmer's ability to utilize PC object model efficiently in the small---results in a system that is ideal for the development of reusable, data-intensive tools and libraries. Through extensive benchmarking, we show that implementing complex objects manipulation and non-trivial, library-style computations on top of PlinyCompute can result in a speedup of 2x to more than 50x or more compared to equivalent implementations on Spark.Comment: 48 pages, including references and Appendi

    Networked inventory management by distributed object technology

    Get PDF

    Deterministic Object Management in Large Distributed Systems

    Get PDF
    Caching is a widely used technique to improve the scalability of distributed systems. A central issue with caching is maintaining object replicas consistent with their master copies. Large distributed systems, such as the Web, typically deploy heuristic-based consistency mechanisms, which increase delay and place extra load on the servers, while not providing guarantees that cached copies served to clients are up-to-date. Server-driven invalidation has been proposed as an approach to strong cache consistency, but it requires servers to keep track of which objects are cached by which clients. We propose an alternative approach to strong cache consistency, called MONARCH, which does not require servers to maintain per-client state. Our approach builds on a few key observations. Large and popular sites, which attract the majority of the traffic, construct their pages from distinct components with various characteristics. Components may have different content types, change characteristics, and semantics. These components are merged together to produce a monolithic page, and the information about their uniqueness is lost. In our view, pages should serve as containers holding distinct objects with heterogeneous type and change characteristics while preserving the boundaries between these objects. Servers compile object characteristics and information about relationships between containers and embedded objects into explicit object management commands. Servers piggyback these commands onto existing request/response traffic so that client caches can use these commands to make object management decisions. The use of explicit content control commands is a deterministic, rather than heuristic, object management mechanism that gives content providers more control over their content. The deterministic object management with strong cache consistency offered by MONARCH allows content providers to make more of their content cacheable. Furthermore, MONARCH enables content providers to expose internal structure of their pages to clients. We evaluated MONARCH using simulations with content collected from real Web sites. The results show that MONARCH provides strong cache consistency for all objects, even for unpredictably changing ones, and incurs smaller byte and message overhead than heuristic policies. The results also show that as the request arrival rate or the number of clients increases, the amount of server state maintained by MONARCH remains the same while the amount of server state incurred by server invalidation mechanisms grows

    An approach to building a secure and persistent distributed object management system

    Full text link
    The Common Object Request Broker Architecture (CORBA) proposed by the Object Management Group (OMG) is a widely accepted standard to provide a system level framework in design and implementation of distributed objects. The core of the Object Management Architecture (OMA) is an Object Request Broker (ORB), which provides transparency of object location, activation, and communications. However, the specification provided by the OMG is not sufficient. For instance, there are no security specifications when handling object requests through the ORBs. The lack of such a security service prevents the use of CORBA from handling sensitive data such as personal and corporate financial information; In view of the above, this thesis identifies, explores, and provides an approach to handling secure objects in a distributed environment along with a persistent object service using the CORBA specification. The research specifically involves the design and implementation of a secured distributed object service. This object service requires a persistent service and object storage for storing and retrieving security specific information. To provide a secure distributed object environment, a secure object service using the specifications provided by the OMG has been designed and implemented. In addition, to preserve the persistence of secure information, an object service has been implemented to provide a persistent data store; The secure object service can provide a framework for handling distributed object in applications requiring security clearance such as distributed banking, online stock tradings, internet shopping, geographic and medical information systems
    • …
    corecore