2,919 research outputs found

    Symmetry Breaking for Answer Set Programming

    Full text link
    In the context of answer set programming, this work investigates symmetry detection and symmetry breaking to eliminate symmetric parts of the search space and, thereby, simplify the solution process. We contribute a reduction of symmetry detection to a graph automorphism problem which allows to extract symmetries of a logic program from the symmetries of the constructed coloured graph. We also propose an encoding of symmetry-breaking constraints in terms of permutation cycles and use only generators in this process which implicitly represent symmetries and always with exponential compression. These ideas are formulated as preprocessing and implemented in a completely automated flow that first detects symmetries from a given answer set program, adds symmetry-breaking constraints, and can be applied to any existing answer set solver. We demonstrate computational impact on benchmarks versus direct application of the solver. Furthermore, we explore symmetry breaking for answer set programming in two domains: first, constraint answer set programming as a novel approach to represent and solve constraint satisfaction problems, and second, distributed nonmonotonic multi-context systems. In particular, we formulate a translation-based approach to constraint answer set solving which allows for the application of our symmetry detection and symmetry breaking methods. To compare their performance with a-priori symmetry breaking techniques, we also contribute a decomposition of the global value precedence constraint that enforces domain consistency on the original constraint via the unit-propagation of an answer set solver. We evaluate both options in an empirical analysis. In the context of distributed nonmonotonic multi-context system, we develop an algorithm for distributed symmetry detection and also carry over symmetry-breaking constraints for distributed answer set programming.Comment: Diploma thesis. Vienna University of Technology, August 201

    Preferential Multi-Context Systems

    Full text link
    Multi-context systems (MCS) presented by Brewka and Eiter can be considered as a promising way to interlink decentralized and heterogeneous knowledge contexts. In this paper, we propose preferential multi-context systems (PMCS), which provide a framework for incorporating a total preorder relation over contexts in a multi-context system. In a given PMCS, its contexts are divided into several parts according to the total preorder relation over them, moreover, only information flows from a context to ones of the same part or less preferred parts are allowed to occur. As such, the first ll preferred parts of an PMCS always fully capture the information exchange between contexts of these parts, and then compose another meaningful PMCS, termed the ll-section of that PMCS. We generalize the equilibrium semantics for an MCS to the (maximal) l≤l_{\leq}-equilibrium which represents belief states at least acceptable for the ll-section of an PMCS. We also investigate inconsistency analysis in PMCS and related computational complexity issues

    Large-scale Parallel Stratified Defeasible Reasoning

    Get PDF
    We are recently experiencing an unprecedented explosion of available data from the Web, sensors readings, scientific databases, government authorities and more. Such datasets could benefit from the introduction of rule sets encoding commonly accepted rules or facts, application- or domain-specific rules, commonsense knowledge etc. This raises the question of whether, how, and to what extent knowledge representation methods are capable of handling huge amounts of data for these applications. In this paper, we consider inconsistency-tolerant reasoning in the form of defeasible logic, and analyze how parallelization, using the MapReduce framework, can be used to reason with defeasible rules over huge datasets. We extend previous work by dealing with predicates of arbitrary arity, under the assumption of stratification. Moving from unary to multi-arity predicates is a decisive step towards practical applications, e.g. reasoning with linked open (RDF) data. Our experimental results demonstrate that defeasible reasoning with millions of data is performant, and has the potential to scale to billions of facts

    A Model for an Intelligent Support Decision System in Aquaculture

    Get PDF
    The paper purpose an intelligent software system agents–based to support decision in aquculture and the approach of fish diagnosis with informatics methods, techniques and solutions. A major purpose is to develop new methods and techniques for quick fish diagnosis, treatment and prophyilaxis at infectious and parasite-based known disorders, that may occur at fishes raised in high density in intensive raising systems. But, the goal of this paper is to presents a model of an intelligent agents-based diagnosis method will be developed for a support decision system.support decision system, diagnosis, multi-agent system, fish diseases

    The Integration of Connectionism and First-Order Knowledge Representation and Reasoning as a Challenge for Artificial Intelligence

    Get PDF
    Intelligent systems based on first-order logic on the one hand, and on artificial neural networks (also called connectionist systems) on the other, differ substantially. It would be very desirable to combine the robust neural networking machinery with symbolic knowledge representation and reasoning paradigms like logic programming in such a way that the strengths of either paradigm will be retained. Current state-of-the-art research, however, fails by far to achieve this ultimate goal. As one of the main obstacles to be overcome we perceive the question how symbolic knowledge can be encoded by means of connectionist systems: Satisfactory answers to this will naturally lead the way to knowledge extraction algorithms and to integrated neural-symbolic systems.Comment: In Proceedings of INFORMATION'2004, Tokyo, Japan, to appear. 12 page
    • …
    corecore