4,655 research outputs found

    Optimization Methods Applied to Power Systems â…¡

    Get PDF
    Electrical power systems are complex networks that include a set of electrical components that allow distributing the electricity generated in the conventional and renewable power plants to distribution systems so it can be received by final consumers (businesses and homes). In practice, power system management requires solving different design, operation, and control problems. Bearing in mind that computers are used to solve these complex optimization problems, this book includes some recent contributions to this field that cover a large variety of problems. More specifically, the book includes contributions about topics such as controllers for the frequency response of microgrids, post-contingency overflow analysis, line overloads after line and generation contingences, power quality disturbances, earthing system touch voltages, security-constrained optimal power flow, voltage regulation planning, intermittent generation in power systems, location of partial discharge source in gas-insulated switchgear, electric vehicle charging stations, optimal power flow with photovoltaic generation, hydroelectric plant location selection, cold-thermal-electric integrated energy systems, high-efficiency resonant devices for microwave power generation, security-constrained unit commitment, and economic dispatch problems

    Voltage and Reactive Power Control in Islanded Microgrids

    Get PDF
    Previous studies put on view lots of advantages and concerns for islanded microgrids (IMGs), whether it is initiated for emergency, intentionally planned or permanent island system purposes. From the concerns that have not been addressed yet, such as: 1) The ability of the distributed generation (DG) units to maintain equal reactive power sharing in a distribution system; 2) The ability of the DG units to maintain acceptable voltage boundary in the entire IMG; 3) The functionality of the existing voltage and reactive power (Volt/Var) DG, this thesis analyzes the complexity of voltage regulations in droop-controlled IMGs. A new multi-agent algorithm is proposed to satisfy the reactive power sharing and the voltage regulation requirements of IMGs. Also, the operation conflicts between DG units and Volt/Var controllers, such as shunt capacitors (SCs) and load-ratio control transformer (LRT) during the IMG mode of operation, are investigated in this thesis. Further, a new local control scheme for SCs and LRTs has been proposed to mitigate their operational challenges in IMGs

    Research on key techniques of flexible workflow based approach to supporting dynamic engineering design process

    Get PDF
    Error on title page - correct year of award is 2015 not 2013.Engineering design process (EDP) is a highly dynamic and creative process, and the capability in managing an EDP is considered as a major differentiating factor between competing enterprises. The most important prerequisite to establish an engineering design process excellence is a proper management of all the design process activities and the associated information. The most important impact in recent years on the EDP and on the activities of designers has come from computer-based data processing. Workflow, the automation of a business processes in whole or part, is a useful tool for modelling and managing a business process which can be reprensented by a workflow model (computerized process definition). By considering the dynamic characteristics of EDP, an EDP management system must be flexible enough to support the creative and dynamic EDP. After the introduction of engineering design process and its new trend, as well as flexible workflow technology, reviews of both engineering design process and its supporting flexible workflow technology shows that there is a need for a holistic framework to automate and coordinate design activities in the creative and dynamic EDP, and the flexible workflow technology should also be improved comprehensively in flexibility and intelligence in order to support better engineering design management. By introducing the relations between the EDP and flexible workflow, a virtual workflow and an autonomic flexible workflow built upon autonomic computing is investigated, and an innovative engineering design process management framework based on multi-autonomic objects flexible workflow is proposed. For the flexible workflow modelling in the framework, a dynamic instance-based flexible workflow modelling method is proposed for multi-autonomic objects flexible workflow. In order to improve the intelligence of flexible workflow, after examining the principle of flexible workflow intelligence in flexible workflow, a new flexible workflow autonomic object intelligence algorithm based on both extended Mamdani fuzzy reasoning and neural network is proposed, weighted fuzzy reasoning algorithm, as well as precise and fuzzy hybrid knowledge reasoning algorithm is designed; a bionic flexible workflow adaptation algorithm is proposed to improve the intelligence of autonomic object flexible workflow further. According to the characteristic of EDP, such as cross-enterprises and geographical distribution, and in order to realize the flexible execution of distributed flexible workflow engine, a distributed flexible workflow engine architecture based on web service is proposed and a flexible workflow model description method based on extended WSDL (Web Service Description Language) and BPEL4WS (Business Process Execution Language for Web Services) is proposed. A flexible workflow prototype system supporting engineering design process is implemented according to the proposed EDP management framework in Microsoft VS.Net 2005 environment. The framework is demonstrated by the application in an EDP of a MTO company, and it shows that the proposed framework can support the creative and dynamic process in an efficient way. Finally, the strengths and weakness of the framework as well as the prototype system is discussed based on the results of the evaluation, and the proposed areas of future work are given.Engineering design process (EDP) is a highly dynamic and creative process, and the capability in managing an EDP is considered as a major differentiating factor between competing enterprises. The most important prerequisite to establish an engineering design process excellence is a proper management of all the design process activities and the associated information. The most important impact in recent years on the EDP and on the activities of designers has come from computer-based data processing. Workflow, the automation of a business processes in whole or part, is a useful tool for modelling and managing a business process which can be reprensented by a workflow model (computerized process definition). By considering the dynamic characteristics of EDP, an EDP management system must be flexible enough to support the creative and dynamic EDP. After the introduction of engineering design process and its new trend, as well as flexible workflow technology, reviews of both engineering design process and its supporting flexible workflow technology shows that there is a need for a holistic framework to automate and coordinate design activities in the creative and dynamic EDP, and the flexible workflow technology should also be improved comprehensively in flexibility and intelligence in order to support better engineering design management. By introducing the relations between the EDP and flexible workflow, a virtual workflow and an autonomic flexible workflow built upon autonomic computing is investigated, and an innovative engineering design process management framework based on multi-autonomic objects flexible workflow is proposed. For the flexible workflow modelling in the framework, a dynamic instance-based flexible workflow modelling method is proposed for multi-autonomic objects flexible workflow. In order to improve the intelligence of flexible workflow, after examining the principle of flexible workflow intelligence in flexible workflow, a new flexible workflow autonomic object intelligence algorithm based on both extended Mamdani fuzzy reasoning and neural network is proposed, weighted fuzzy reasoning algorithm, as well as precise and fuzzy hybrid knowledge reasoning algorithm is designed; a bionic flexible workflow adaptation algorithm is proposed to improve the intelligence of autonomic object flexible workflow further. According to the characteristic of EDP, such as cross-enterprises and geographical distribution, and in order to realize the flexible execution of distributed flexible workflow engine, a distributed flexible workflow engine architecture based on web service is proposed and a flexible workflow model description method based on extended WSDL (Web Service Description Language) and BPEL4WS (Business Process Execution Language for Web Services) is proposed. A flexible workflow prototype system supporting engineering design process is implemented according to the proposed EDP management framework in Microsoft VS.Net 2005 environment. The framework is demonstrated by the application in an EDP of a MTO company, and it shows that the proposed framework can support the creative and dynamic process in an efficient way. Finally, the strengths and weakness of the framework as well as the prototype system is discussed based on the results of the evaluation, and the proposed areas of future work are given

    Dynamic multi-ramp metering control with simultaneous perturbation stochastic approximation (SPSA)

    Get PDF
    Ramp metering was proven to be a viable form of freeway traffic control strategy, which could eliminate, or at least reduce, freeway congestion. In this study, the development of ramp metering control strategies, models, and constraints (e.g., meter locations, ramp storage capacities, lower and upper bounds of ramp metering rates) are discussed in detail. The pre-timed and demand/capacity metering control strategies were first evaluated, while the potential metered ramps were determined. A Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm is proposed to dynamically optimize multiple-ramp metering control by maximizing the total throughput subject to a number of constraints. The ramp metering rates subject to dynamic traffic conditions and capacity constraints are considered as decision variables in the SPSA algorithm. Based on the collected geometric and traffic data, a CORSIM model was developed to simulate traffic operation for the study site. The potential benefit of the dynamic multi-ramp metering control model under time varying traffic condition was simulated and evaluated. The increased total throughput and reduced total delay were observed, while the traffic conditions suitable for implementing ramp metering control were suggested. The developed dynamic multi-ramp metering control with SPSA algorithm has demonstrated its effectiveness to improve freeway operation

    Innovative Modelling Approaches for the Design, Operation and Control of Complex Energy Systems with Application to Underground Infrastructures

    Get PDF
    The ventilations systems play a key role in underground infrastructures for health and safety of occupants during normal operation as well as during accidents. Their performances are affected by selection of the optimal design, operation and control that is investigated by predicting air flow. The calculation of ventilation flows and their interaction with fires can be done with different modelling approaches that differ in the accuracy and in the required resources. The 3D computational fluid dynamics (CFD) tools approximate the flow behaviour with a great accuracy but they require high computational resources. The one dimensional (1D) models allow a compact description of the system with a low computational time but they are unsuitable to simulate thermal fluid-dynamic scenarios characterized by turbulence and gradients. Innovative tools are necessary in order to make the analysis and optimization of these systems possible and accurate in a reasonable time. This can be achieved both with appropriate numerical approaches to the full domain as the model order reduction techniques and with the domain decompositions methods as the multiscale physical decomposition technique. The reduced order mode techniques as the proper orthogonal decomposition (POD) is based on the snapshots method provides an optimal linear basis for the reconstruction of multidimensional data. This technique has been applied to non-dimensional equations in order to produce a reduced model not depending on the geometry, source terms, boundary conditions and initial conditions. This type of modelling is adapted to the optimization strategies of the design and operation allowing to explore several configuration in reduced times, and for the real time simulation in the control algorithms. The physical decomposition achieved through multiscale approaches uses the accuracy of the CFD code in the near field e.g. the region close to the fire source, and takes advantage of the low computational cost of the 1-D model in the region where gradients in the transversal direction are negligible. In last years, the multiscale approach has been proposed for the analysis of tunnel ventilation. Among the several CFD codes used in this field, the Fire Dynamic Simulator (FDS) is suitable for the multiscale modelling. This is an open source CFD package developed by NIST and VTT and presents the HVAC routine in which the conservation equations of mass, energy and momentum are implemented. Currently, the HVAC module does not allow one to consider heat and mass transfer, which significanltly limits the applications. For these reasons a multiscale simulator has been created through the fully integration of a 1D continuity, momentum, energy and mass transport equation in FDS modifying its source codes. The multiscale simulator thus obtained, is based on a direct coupling by means of a Dirichlet-Neumann strategy. At each 1-D-CFD interface, the exchange flow information occurs prescribing thermo-fluid dynamic boundary conditions. The 1-D mass transport equation computes the diffusion of the exhaust gas from the CFD domain and the relative concentration that is particularly interesting in the case of back layering of smoke. The global convergence of the boundary conditions at each 1-D-CFD interface has been analyzed by monitoring the evolution of thermo-fluid dynamic variables (temperature, velocity, pressure and concentration. The multiscale simulator is suitable for parametric and sensitivity studies of the design and the operation ventilation and fire safety systems. This new tool will be available for all the scientific community. In this thesis, Chapter 1 provides a general introduction to the role of the system ventilation in underground infrastructures and to the innovative modelling strategies proposed for these systems. Chapter 2 offers a description of the 1D network modelling, its fluid-dynamic application to the Frejus tunnel and its thermal application to ground heat exchangers. In Chapter 3, the proper orthogonal decomposition method is presented and its application to the optimal control of the sanitary ventilation for the Padornelo Tunnel is discussed. To demonstrate the applicability of POD method in other fields, boreholes thermal energy storage systems have been considered in same chapter. In particular, a multi-objective optimization strategy is applied to investigate the optimal design of these system and an optimization algorithm for the operation is proposed. Chapter 4 describes the multiscale approach and the relative simulator. The new open tool is used for modeling the ventilation system of the Monte Cuneo road tunnel in case of fire. Results show that in the case of the current configuration of the ventilation system, depending on the atmospheric conditions at portals, smoke might not be fully confined. Significant improvements in terms of safety conditions can be achieved through increase of in smoke extraction, which requires the installation of large dumpers and of deflectors on the jet fans. The developed tool shows to be particularly effective in such analysis, also concerning the evaluation of local conditions for people evacuation and fire-brigades operation

    Symmetry in Renewable Energy and Power Systems

    Get PDF
    This book includes original research papers related to renewable energy and power systems in which theoretical or practical issues of symmetry are considered. The book includes contributions on voltage stability analysis in DC networks, optimal dispatch of islanded microgrid systems, reactive power compensation, direct power compensation, optimal location and sizing of photovoltaic sources in DC networks, layout of parabolic trough solar collectors, topologic analysis of high-voltage transmission grids, geometric algebra and power systems, filter design for harmonic current compensation. The contributions included in this book describe the state of the art in this field and shed light on the possibilities that the study of symmetry has in power grids and renewable energy systems
    • …
    corecore