112,809 research outputs found

    Evolutionary Algorithms for Community Detection in Continental-Scale High-Voltage Transmission Grids

    Get PDF
    Symmetry is a key concept in the study of power systems, not only because the admittance and Jacobian matrices used in power flow analysis are symmetrical, but because some previous studies have shown that in some real-world power grids there are complex symmetries. In order to investigate the topological characteristics of power grids, this paper proposes the use of evolutionary algorithms for community detection using modularity density measures on networks representing supergrids in order to discover densely connected structures. Two evolutionary approaches (generational genetic algorithm, GGA+, and modularity and improved genetic algorithm, MIGA) were applied. The results obtained in two large networks representing supergrids (European grid and North American grid) provide insights on both the structure of the supergrid and the topological differences between different regions. Numerical and graphical results show how these evolutionary approaches clearly outperform to the well-known Louvain modularity method. In particular, the average value of modularity obtained by GGA+ in the European grid was 0.815, while an average of 0.827 was reached in the North American grid. These results outperform those obtained by MIGA and Louvain methods (0.801 and 0.766 in the European grid and 0.813 and 0.798 in the North American grid, respectively)

    Analytical Challenges in Modern Tax Administration: A Brief History of Analytics at the IRS

    Get PDF

    The stability of a graph partition: A dynamics-based framework for community detection

    Full text link
    Recent years have seen a surge of interest in the analysis of complex networks, facilitated by the availability of relational data and the increasingly powerful computational resources that can be employed for their analysis. Naturally, the study of real-world systems leads to highly complex networks and a current challenge is to extract intelligible, simplified descriptions from the network in terms of relevant subgraphs, which can provide insight into the structure and function of the overall system. Sparked by seminal work by Newman and Girvan, an interesting line of research has been devoted to investigating modular community structure in networks, revitalising the classic problem of graph partitioning. However, modular or community structure in networks has notoriously evaded rigorous definition. The most accepted notion of community is perhaps that of a group of elements which exhibit a stronger level of interaction within themselves than with the elements outside the community. This concept has resulted in a plethora of computational methods and heuristics for community detection. Nevertheless a firm theoretical understanding of most of these methods, in terms of how they operate and what they are supposed to detect, is still lacking to date. Here, we will develop a dynamical perspective towards community detection enabling us to define a measure named the stability of a graph partition. It will be shown that a number of previously ad-hoc defined heuristics for community detection can be seen as particular cases of our method providing us with a dynamic reinterpretation of those measures. Our dynamics-based approach thus serves as a unifying framework to gain a deeper understanding of different aspects and problems associated with community detection and allows us to propose new dynamically-inspired criteria for community structure.Comment: 3 figures; published as book chapte
    corecore