14,188 research outputs found

    Agent based modeling of power distribution systems

    Get PDF
    The electric power system is a very vast network and becoming more complex each day. The traditional vertically monopolistic structure has been deregulated and replaced by gencos, transcos and, discos; increasing the power system intricacy. During the past few decades there has been remarkable development in software and hardware technologies for the analysis and design activities in power system planning, operation, and control. However, much still depends on the judgment of human experts. A single fault in power system can lead to multiple faults and can collapse the whole system. Power System needs a more decentralized control mechanism for solving these problems. One novel solution would be Multi-agent Systems. A Multi-agent system is a collection of agents, which perceives the system changes and acts on the system in order to achieve its goals. Recent technology developments in the area of Multi-agent systems making it a viable solution for today\u27s complicated power network.;A Multi-agent system model is developed for fault detection and reconfiguration in this thesis work. These models are developed based on graph theory tree models and mathematical models. A set of objective functions are specified in the mathematical model for the restoration of the network.;The agent platform for the fault detection is developed by Java Agent Development Framework. The restoration algorithm is programmed in MATLAB and applied to the distribution system modeled in the commercial software, Distributed Engineering Workstation and Power World Simulator. The test system in this thesis is, a distribution system developed by Southern California Edison called Circuit of the Future.;The Multi-agent system can detect the fault precisely and reconfigures the circuit using the reconfiguration algorithm. The reconfiguration will happen in a way that it always try to supply all the critical loads in the network. When there are multiple solutions available for reconfiguration, the one with good voltage profile and less power loss is selected as the solution. The algorithm makes use of shunt compensation and priority based load shedding in order to control the voltage across the network. Agents make use of learning to speed up the reconfiguration process

    Sub-agent elements for control methods in multi-agent energy management system

    Get PDF
    Increased penetration of generation and decentralised control are considered to be feasible and effective solution for reducing cost and emissions and hence efficiency associated with power generation and distribution. Distributed generation in combination with the multi-agent technology are perfect candidates for this solution. Pro-active and autonomous nature of multi-agent systems can provide an effective platform for decentralised control whilst improving reliability and flexibility of the grid

    Chance-Constrained Outage Scheduling using a Machine Learning Proxy

    Full text link
    Outage scheduling aims at defining, over a horizon of several months to years, when different components needing maintenance should be taken out of operation. Its objective is to minimize operation-cost expectation while satisfying reliability-related constraints. We propose a distributed scenario-based chance-constrained optimization formulation for this problem. To tackle tractability issues arising in large networks, we use machine learning to build a proxy for predicting outcomes of power system operation processes in this context. On the IEEE-RTS79 and IEEE-RTS96 networks, our solution obtains cheaper and more reliable plans than other candidates

    Planning and Resource Management in an Intelligent Automated Power Management System

    Get PDF
    Power system management is a process of guiding a power system towards the objective of continuous supply of electrical power to a set of loads. Spacecraft power system management requires planning and scheduling, since electrical power is a scarce resource in space. The automation of power system management for future spacecraft has been recognized as an important R&D goal. Several automation technologies have emerged including the use of expert systems for automating human problem solving capabilities such as rule based expert system for fault diagnosis and load scheduling. It is questionable whether current generation expert system technology is applicable for power system management in space. The objective of the ADEPTS (ADvanced Electrical Power management Techniques for Space systems) is to study new techniques for power management automation. These techniques involve integrating current expert system technology with that of parallel and distributed computing, as well as a distributed, object-oriented approach to software design. The focus of the current study is the integration of new procedures for automatically planning and scheduling loads with procedures for performing fault diagnosis and control. The objective is the concurrent execution of both sets of tasks on separate transputer processors, thus adding parallelism to the overall management process

    Smart Microgrids: Overview and Outlook

    Full text link
    The idea of changing our energy system from a hierarchical design into a set of nearly independent microgrids becomes feasible with the availability of small renewable energy generators. The smart microgrid concept comes with several challenges in research and engineering targeting load balancing, pricing, consumer integration and home automation. In this paper we first provide an overview on these challenges and present approaches that target the problems identified. While there exist promising algorithms for the particular field, we see a missing integration which specifically targets smart microgrids. Therefore, we propose an architecture that integrates the presented approaches and defines interfaces between the identified components such as generators, storage, smart and \dq{dumb} devices.Comment: presented at the GI Informatik 2012, Braunschweig Germany, Smart Grid Worksho

    A design for an intelligent monitor and controller for space station electrical power using parallel distributed problem solving

    Get PDF
    The emphasis is on defining a set of communicating processes for intelligent spacecraft secondary power distribution and control. The computer hardware and software implementation platform for this work is that of the ADEPTS project at the Johnson Space Center (JSC). The electrical power system design which was used as the basis for this research is that of Space Station Freedom, although the functionality of the processes defined here generalize to any permanent manned space power control application. First, the Space Station Electrical Power Subsystem (EPS) hardware to be monitored is described, followed by a set of scenarios describing typical monitor and control activity. Then, the parallel distributed problem solving approach to knowledge engineering is introduced. There follows a two-step presentation of the intelligent software design for secondary power control. The first step decomposes the problem of monitoring and control into three primary functions. Each of the primary functions is described in detail. Suggestions for refinements and embelishments in design specifications are given
    corecore