28,499 research outputs found

    Distributed Model Predictive Control with Asymmetric Adaptive Terminal Sets for the Regulation of Large-scale Systems

    Full text link
    In this paper, a novel distributed model predictive control (MPC) scheme with asymmetric adaptive terminal sets is developed for the regulation of large-scale systems with a distributed structure. Similar to typical MPC schemes, a structured Lyapunov matrix and a distributed terminal controller, respecting the distributed structure of the system, are computed offline. However, in this scheme, a distributed positively invariant terminal set is computed online and updated at each time instant taking into consideration the current state of the system. In particular, we consider ellipsoidal terminal sets as they are easy to compute for large-scale systems. The size and the center of these terminal sets, together with the predicted state and input trajectories, are considered as decision variables in the online phase. Determining the terminal set center online is found to be useful specifically in the presence of asymmetric constraints. Finally, a relaxation of the resulting online optimal control problem is provided. The efficacy of the proposed scheme is illustrated in simulation by comparing it to a recent distributed MPC scheme with adaptive terminal sets

    On feasibility, stability and performance in distributed model predictive control

    Full text link
    In distributed model predictive control (DMPC), where a centralized optimization problem is solved in distributed fashion using dual decomposition, it is important to keep the number of iterations in the solution algorithm, i.e. the amount of communication between subsystems, as small as possible. At the same time, the number of iterations must be enough to give a feasible solution to the optimization problem and to guarantee stability of the closed loop system. In this paper, a stopping condition to the distributed optimization algorithm that guarantees these properties, is presented. The stopping condition is based on two theoretical contributions. First, since the optimization problem is solved using dual decomposition, standard techniques to prove stability in model predictive control (MPC), i.e. with a terminal cost and a terminal constraint set that involve all state variables, do not apply. For the case without a terminal cost or a terminal constraint set, we present a new method to quantify the control horizon needed to ensure stability and a prespecified performance. Second, the stopping condition is based on a novel adaptive constraint tightening approach. Using this adaptive constraint tightening approach, we guarantee that a primal feasible solution to the optimization problem is found and that closed loop stability and performance is obtained. Numerical examples show that the number of iterations needed to guarantee feasibility of the optimization problem, stability and a prespecified performance of the closed-loop system can be reduced significantly using the proposed stopping condition

    Model predictive control techniques for hybrid systems

    Get PDF
    This paper describes the main issues encountered when applying model predictive control to hybrid processes. Hybrid model predictive control (HMPC) is a research field non-fully developed with many open challenges. The paper describes some of the techniques proposed by the research community to overcome the main problems encountered. Issues related to the stability and the solution of the optimization problem are also discussed. The paper ends by describing the results of a benchmark exercise in which several HMPC schemes were applied to a solar air conditioning plant.Ministerio de Eduación y Ciencia DPI2007-66718-C04-01Ministerio de Eduación y Ciencia DPI2008-0581

    Learning Robustness with Bounded Failure: An Iterative MPC Approach

    Full text link
    We propose an approach to design a Model Predictive Controller (MPC) for constrained Linear Time Invariant systems performing an iterative task. The system is subject to an additive disturbance, and the goal is to learn to satisfy state and input constraints robustly. Using disturbance measurements after each iteration, we construct Confidence Support sets, which contain the true support of the disturbance distribution with a given probability. As more data is collected, the Confidence Supports converge to the true support of the disturbance. This enables design of an MPC controller that avoids conservative estimate of the disturbance support, while simultaneously bounding the probability of constraint violation. The efficacy of the proposed approach is then demonstrated with a detailed numerical example.Comment: Added GitHub link to all source code

    Control of Solar Power Systems: a survey

    Get PDF
    9th International Symposium on Dynamics and Controlof Process Systems (DYCOPS 2010)Leuven, Belgium, July 5-7, 20109This paper deals with the main control problems found in solar power systems and the solutions proposed in literature. The paper first describes the main solar power technologies, its development status and then describes the main challenges encountered when controlling solar power systems.Ministerio de Ciencia y Tecnología DPI2008-05818Ministerio de Ciencia y Tecnología DPI2007-66718-C04-04Junta de Andalucía P07-TEP-0272
    corecore