1,876 research outputs found

    Lessons learned from the design of a mobile multimedia system in the Moby Dick project

    Get PDF
    Recent advances in wireless networking technology and the exponential development of semiconductor technology have engendered a new paradigm of computing, called personal mobile computing or ubiquitous computing. This offers a vision of the future with a much richer and more exciting set of architecture research challenges than extrapolations of the current desktop architectures. In particular, these devices will have limited battery resources, will handle diverse data types, and will operate in environments that are insecure, dynamic and which vary significantly in time and location. The research performed in the MOBY DICK project is about designing such a mobile multimedia system. This paper discusses the approach made in the MOBY DICK project to solve some of these problems, discusses its contributions, and accesses what was learned from the project

    Avionics test bed development plan

    Get PDF
    A development plan for a proposed avionics test bed facility for the early investigation and evaluation of new concepts for the control of large space structures, orbiter attached flex body experiments, and orbiter enhancements is presented. A distributed data processing facility that utilizes the current laboratory resources for the test bed development is outlined. Future studies required for implementation, the management system for project control, and the baseline system configuration are defined. A background analysis of the specific hardware system for the preliminary baseline avionics test bed system is included

    Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 3: ARAMIS overview

    Get PDF
    An overview of automation, robotics, and machine intelligence systems (ARAMIS) is provided. Man machine interfaces, classification, and capabilities are considered

    Aggregate Farming in the Cloud: The AFarCloud ECSEL project

    Get PDF
    Farming is facing many economic challenges in terms of productivity and cost-effectiveness. Labor shortage partly due to depopulation of rural areas, especially in Europe, is another challenge. Domain specific problems such as accurate monitoring of soil and crop properties and animal health are key factors for minimizing economical risks, and not risking human health. The ECSEL AFarCloud (Aggregate Farming in the Cloud) project will provide a distributed platform for autonomous farming that will allow the integration and cooperation of agriculture Cyber Physical Systems in real-time in order to increase efficiency, productivity, animal health, food quality and reduce farm labor costs. Moreover, such a platform can be integrated with farm management software to support monitoring and decision-making solutions based on big data and real-time data mining techniques.publishedVersio

    Principles of Neuromorphic Photonics

    Full text link
    In an age overrun with information, the ability to process reams of data has become crucial. The demand for data will continue to grow as smart gadgets multiply and become increasingly integrated into our daily lives. Next-generation industries in artificial intelligence services and high-performance computing are so far supported by microelectronic platforms. These data-intensive enterprises rely on continual improvements in hardware. Their prospects are running up against a stark reality: conventional one-size-fits-all solutions offered by digital electronics can no longer satisfy this need, as Moore's law (exponential hardware scaling), interconnection density, and the von Neumann architecture reach their limits. With its superior speed and reconfigurability, analog photonics can provide some relief to these problems; however, complex applications of analog photonics have remained largely unexplored due to the absence of a robust photonic integration industry. Recently, the landscape for commercially-manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. The scientific community has set out to build bridges between the domains of photonic device physics and neural networks, giving rise to the field of \emph{neuromorphic photonics}. This article reviews the recent progress in integrated neuromorphic photonics. We provide an overview of neuromorphic computing, discuss the associated technology (microelectronic and photonic) platforms and compare their metric performance. We discuss photonic neural network approaches and challenges for integrated neuromorphic photonic processors while providing an in-depth description of photonic neurons and a candidate interconnection architecture. We conclude with a future outlook of neuro-inspired photonic processing.Comment: 28 pages, 19 figure

    Preliminary Candidate Advanced Avionics System (PCAAS)

    Get PDF
    Specifications which define the system functional requirements, the subsystem and interface needs, and other requirements such as maintainability, modularity, and reliability are summarized. A design definition of all required avionics functions and a system risk analysis are presented

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    1983-1984 College of Boca Raton Catalog

    Get PDF
    https://spiral.lynn.edu/accatalogs/1009/thumbnail.jp

    Analysis of Single Board Architectures Integrating Sensors Technologies

    Get PDF
    Development boards, Single-Board Computers (SBCs) and Single-Board Microcontrollers (SBMs) integrating sensors and communication technologies have become a very popular and interesting solution in the last decade. They are of interest for their simplicity, versatility, adaptability, ease of use and prototyping, which allow them to serve as a starting point for projects and as reference for all kinds of designs. In this sense, there are innumerable applications integrating sensors and communication technologies where they are increasingly used, including robotics, domotics, testing and measurement, Do-It-Yourself (DIY) projects, Internet of Things (IoT) devices in the home or workplace and science, technology, engineering, educational and also academic world for STEAM (Science, Technology, Engineering and Mathematics) skills. The interest in single-board architectures and their applications have caused that all electronics manufacturers currently develop low-cost single board platform solutions. In this paper we realized an analysis of the most important topics related with single-board architectures integrating sensors. We analyze the most popular platforms based on characteristics as: cost, processing capacity, integrated processing technology and opensource license, as well as power consumption (mA@V), reliability (%), programming flexibility, support availability and electronics utilities. For evaluation, an experimental framework has been designed and implemented with six sensors (temperature, humidity, CO2/TVOC, pressure, ambient light and CO) and different data storage and monitoring options: locally on a ”SD (Micro Secure Digital), on a Cloud Server, on a Web Server or on a Mobile ApplicationThis research was partially supported by the Centro Científico Tecnológico de Huelva (CCTH), University of Huelv
    • 

    corecore