720 research outputs found

    2-DOF Contactless Distributed Manipulation Using Superposition of Induced Air Flows.

    No full text
    International audienceMany industries require contactless transport and positioning of delicate or clean objects such as silicon wafers, glass sheets, solar cell or flat foodstuffs. The authors have presented a new form of contactless distributed manipulation using induced air flow. Previous works concerned the evaluation of the maximal velocity of transported objects and one degreeof- freedom position control of objects. This paper introduces an analytic model of the velocity field of the induced air flow according to the spatial configuration of vertical air jets. Then two degrees-of-freedom position control is investigated by exploiting the linearity property of the model. Finally the model is validated under closed-loop control and the performances of the position control are evaluated

    A new Aerodynamic traction principle for handling products on an Air Cushion.

    No full text
    International audienceThis paper introduces a new aerodynamic traction principle for handling delicate and clean products, such as silicon wafers, glass sheets or flat foodstuff. The product is carried on a thin air cushion and transported along the system by induced air flows. This induced air flow is the indirect effect of strong vertical air-jets that pull the surrounding fluid. The paper provides a qualitative explanation of the operating principles and a description of the experimental device. Very first experimental results with active control are presented. The maximum velocity and acceleration that can be obtained for the considered device geometry meet the requirements for industrial applications

    A survey of non-prehensible pneumatic manipulation surfaces : principles, models and control.

    No full text
    International audienceMany manipulation systems using air flow have been proposed for object handling in a non-prehensile way and without solid-to-solid contact. Potential applications include high-speed transport of fragile and clean products and high-resolution positioning of thin delicate objects. This paper discusses a comprehensive survey of state-of-the-art pneumatic manipulation from the macro scale to the micro scale. The working principles and actuation methods of previously developed air-bearing surfaces, ultra-sonic bearing surfaces, air-flow manipulators, air-film manipulators, and tilted air-jet manipulators are reviewed with a particular emphasis on the modeling and the control issues. The performance of the previously developed devices are compared quantitatively and open problems in pneumatic manipulation are discussed

    A new contactless conveyor system for handling clean and delicate products using induced air flows.

    No full text
    International audienceIn this paper, a new contactless conveyor system based on an original aerodynamic traction principle is described and experimented. This device is able to convey without any contact flat objects like silicon wafer, glass sheets or foodstufff thanks to an air cushion and induced air flows. A model of the system is established and the identification of the parameters is carried out. A closed-loop control is proposed for one dimension position control and position tracking. The PID-controller gives good performances for different reference signals. Its robustness to object change and perturbation rejection are also tested

    Evolving Gene Regulatory Networks with Mobile DNA Mechanisms

    Full text link
    This paper uses a recently presented abstract, tuneable Boolean regulatory network model extended to consider aspects of mobile DNA, such as transposons. The significant role of mobile DNA in the evolution of natural systems is becoming increasingly clear. This paper shows how dynamically controlling network node connectivity and function via transposon-inspired mechanisms can be selected for in computational intelligence tasks to give improved performance. The designs of dynamical networks intended for implementation within the slime mould Physarum polycephalum and for the distributed control of a smart surface are considered.Comment: 7 pages, 8 figures. arXiv admin note: substantial text overlap with arXiv:1303.722

    Micropositioning and Fast Transport Using a Contactless Micro-Conveyor

    No full text
    International audienceThe micro-conveyor is a 9 x 9 mm2 manipulation surface able to move millimeter-sized planar objects in the four cardinal directions using air flows. Thanks to a specific design, the air flow comes through a network of micro-channels connected to an array of micro-nozzles. Thus, the micro-conveyor generates an array of tilted air jets that lifts and moves the object in the required direction. In this paper, we characterize the device for transport and positioning tasks and evaluate its performances in terms of speed, resolution and repeatability. We show that the micro-conveyor is able to move the object with a speed up to 137 mm* s-1 in less than 100 ms whereas the positioning repeatability is around 17.7 µm with feedback control. The smallest step the object can do is 0.3 µm (positioning resolution). Moreover, we estimated thanks to a dynamic model that the speed could reach 456 mm* s-1 if several micro-conveyors were used to form a conveying line

    Robust control of a planar manipulator for flexible and contactless handling

    No full text
    International audienceMany industries require non-contact and flexible manipulation systems, such as magnetic or pneumatic devices. In this paper, we describe a one-degree-of-freedom position control of an induced-air-flow surface. This device allows to convey objects on an air cushion using an original aerodynamic traction principle. A model of the system is established and the parameters are identified experimentally. A H1 robust controller is designed and implemented on the device in order to control the object position. Experiments with objects of various dimensions and materials are conducted and showed the robustness capabilities of the controller

    Models and mechanisms for tangible user interfaces

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1997.Includes bibliographical references (leaves 79-82).Brygg Anders Ullmer.M.S
    • …
    corecore