14,506 research outputs found

    Stochastic Analysis of a Churn-Tolerant Structured Peer-to-Peer Scheme

    Full text link
    We present and analyze a simple and general scheme to build a churn (fault)-tolerant structured Peer-to-Peer (P2P) network. Our scheme shows how to "convert" a static network into a dynamic distributed hash table(DHT)-based P2P network such that all the good properties of the static network are guaranteed with high probability (w.h.p). Applying our scheme to a cube-connected cycles network, for example, yields a O(logN)O(\log N) degree connected network, in which every search succeeds in O(logN)O(\log N) hops w.h.p., using O(logN)O(\log N) messages, where NN is the expected stable network size. Our scheme has an constant storage overhead (the number of nodes responsible for servicing a data item) and an O(logN)O(\log N) overhead (messages and time) per insertion and essentially no overhead for deletions. All these bounds are essentially optimal. While DHT schemes with similar guarantees are already known in the literature, this work is new in the following aspects: (1) It presents a rigorous mathematical analysis of the scheme under a general stochastic model of churn and shows the above guarantees; (2) The theoretical analysis is complemented by a simulation-based analysis that validates the asymptotic bounds even in moderately sized networks and also studies performance under changing stable network size; (3) The presented scheme seems especially suitable for maintaining dynamic structures under churn efficiently. In particular, we show that a spanning tree of low diameter can be efficiently maintained in constant time and logarithmic number of messages per insertion or deletion w.h.p. Keywords: P2P Network, DHT Scheme, Churn, Dynamic Spanning Tree, Stochastic Analysis

    Near Optimal Parallel Algorithms for Dynamic DFS in Undirected Graphs

    Full text link
    Depth first search (DFS) tree is a fundamental data structure for solving graph problems. The classical algorithm [SiComp74] for building a DFS tree requires O(m+n)O(m+n) time for a given graph GG having nn vertices and mm edges. Recently, Baswana et al. [SODA16] presented a simple algorithm for updating DFS tree of an undirected graph after an edge/vertex update in O~(n)\tilde{O}(n) time. However, their algorithm is strictly sequential. We present an algorithm achieving similar bounds, that can be adopted easily to the parallel environment. In the parallel model, a DFS tree can be computed from scratch using mm processors in expected O~(1)\tilde{O}(1) time [SiComp90] on an EREW PRAM, whereas the best deterministic algorithm takes O~(n)\tilde{O}(\sqrt{n}) time [SiComp90,JAlg93] on a CRCW PRAM. Our algorithm can be used to develop optimal (upto polylog n factors deterministic algorithms for maintaining fully dynamic DFS and fault tolerant DFS, of an undirected graph. 1- Parallel Fully Dynamic DFS: Given an arbitrary online sequence of vertex/edge updates, we can maintain a DFS tree of an undirected graph in O~(1)\tilde{O}(1) time per update using mm processors on an EREW PRAM. 2- Parallel Fault tolerant DFS: An undirected graph can be preprocessed to build a data structure of size O(m) such that for a set of kk updates (where kk is constant) in the graph, the updated DFS tree can be computed in O~(1)\tilde{O}(1) time using nn processors on an EREW PRAM. Moreover, our fully dynamic DFS algorithm provides, in a seamless manner, nearly optimal (upto polylog n factors) algorithms for maintaining a DFS tree in semi-streaming model and a restricted distributed model. These are the first parallel, semi-streaming and distributed algorithms for maintaining a DFS tree in the dynamic setting.Comment: Accepted to appear in SPAA'17, 32 Pages, 5 Figure

    Decentralized Connectivity-Preserving Deployment of Large-Scale Robot Swarms

    Full text link
    We present a decentralized and scalable approach for deployment of a robot swarm. Our approach tackles scenarios in which the swarm must reach multiple spatially distributed targets, and enforce the constraint that the robot network cannot be split. The basic idea behind our work is to construct a logical tree topology over the physical network formed by the robots. The logical tree acts as a backbone used by robots to enforce connectivity constraints. We study and compare two algorithms to form the logical tree: outwards and inwards. These algorithms differ in the order in which the robots join the tree: the outwards algorithm starts at the tree root and grows towards the targets, while the inwards algorithm proceeds in the opposite manner. Both algorithms perform periodic reconfiguration, to prevent suboptimal topologies from halting the growth of the tree. Our contributions are (i) The formulation of the two algorithms; (ii) A comparison of the algorithms in extensive physics-based simulations; (iii) A validation of our findings through real-robot experiments.Comment: 8 pages, 8 figures, submitted to IROS 201
    corecore