1,799 research outputs found

    Distributed Local Linear Parameter Estimation using Gaussian SPAWN

    Full text link
    We consider the problem of estimating local sensor parameters, where the local parameters and sensor observations are related through linear stochastic models. Sensors exchange messages and cooperate with each other to estimate their own local parameters iteratively. We study the Gaussian Sum-Product Algorithm over a Wireless Network (gSPAWN) procedure, which is based on belief propagation, but uses fixed size broadcast messages at each sensor instead. Compared with the popular diffusion strategies for performing network parameter estimation, whose communication cost at each sensor increases with increasing network density, the gSPAWN algorithm allows sensors to broadcast a message whose size does not depend on the network size or density, making it more suitable for applications in wireless sensor networks. We show that the gSPAWN algorithm converges in mean and has mean-square stability under some technical sufficient conditions, and we describe an application of the gSPAWN algorithm to a network localization problem in non-line-of-sight environments. Numerical results suggest that gSPAWN converges much faster in general than the diffusion method, and has lower communication costs, with comparable root mean square errors

    Bayesian Optimization with Dimension Scheduling: Application to Biological Systems

    Get PDF
    Bayesian Optimization (BO) is a data-efficient method for global black-box optimization of an expensive-to-evaluate fitness function. BO typically assumes that computation cost of BO is cheap, but experiments are time consuming or costly. In practice, this allows us to optimize ten or fewer critical parameters in up to 1,000 experiments. But experiments may be less expensive than BO methods assume: In some simulation models, we may be able to conduct multiple thousands of experiments in a few hours, and the computational burden of BO is no longer negligible compared to experimentation time. To address this challenge we introduce a new Dimension Scheduling Algorithm (DSA), which reduces the computational burden of BO for many experiments. The key idea is that DSA optimizes the fitness function only along a small set of dimensions at each iteration. This DSA strategy (1) reduces the necessary computation time, (2) finds good solutions faster than the traditional BO method, and (3) can be parallelized straightforwardly. We evaluate the DSA in the context of optimizing parameters of dynamic models of microalgae metabolism and show faster convergence than traditional BO

    Decentralized Control of Large Collaborative Swarms using Random Finite Set Theory

    Full text link
    Controlling large swarms of robotic agents presents many challenges including, but not limited to, computational complexity due to a large number of agents, uncertainty in the functionality of each agent in the swarm, and uncertainty in the swarm's configuration. The contribution of this work is to decentralize Random Finite Set (RFS) control of large collaborative swarms for control of individual agents. The RFS control formulation assumes that the topology underlying the swarm control is complete and uses the complete graph in a centralized manner. To generalize the control topology in a localized or decentralized manner, sparse LQR is used to sparsify the RFS control gain matrix obtained using iterative LQR. This allows agents to use information of agents near each other (localized topology) or only the agent's own information (decentralized topology) to make a control decision. Sparsity and performance for decentralized RFS control are compared for different degrees of localization in feedback control gains which show that the stability and performance compared to centralized control do not degrade significantly in providing RFS control for large collaborative swarms.Comment: arXiv admin note: text overlap with arXiv:1810.0069

    Some New Results in Distributed Tracking and Optimization

    Get PDF
    The current age of Big Data is built on the foundation of distributed systems, and efficient distributed algorithms to run on these systems.With the rapid increase in the volume of the data being fed into these systems, storing and processing all this data at a central location becomes infeasible. Such a central \textit{server} requires a gigantic amount of computational and storage resources. Even when it is possible to have central servers, it is not always desirable, due to privacy concerns. Also, sending huge amounts of data to such servers incur often infeasible bandwidth requirements. In this dissertation, we consider two kinds of distributed architectures: 1) star-shaped topology, where multiple worker nodes are connected to, and communicate with a server, but the workers do not communicate with each other; and 2) mesh topology or network of interconnected workers, where each worker can communicate with a small number of neighboring workers. In the first half of this dissertation (Chapters 2 and 3), we consider distributed systems with mesh topology.We study two different problems in this context. First, we study the problem of simultaneous localization and multi-target tracking. Multiple mobile agents localize themselves cooperatively, while also tracking multiple, unknown number of mobile targets, in the presence of measurement-origin uncertainty. In situations with limited GPS signal availability, agents (like self-driving cars in urban canyons, or autonomous vehicles in hazardous environments) need to rely on inter-agent measurements for localization. The agents perform the additional task of tracking multiple targets (pedestrians and road-signs for self-driving cars). We propose a decentralized algorithm for this problem. To be effective in real-time applications, we propose efficient Gaussian and Gaussian-mixture based filters, rather than the computationally expensive particle-based methods in the existing literature. Our novel factor-graph based approach gives better performance, in terms of both agent localization errors, and target-location and cardinality errors. Next, we study an online convex optimization problem, where a network of agents cooperate to minimize a global time-varying objective function. Only the local functions are revealed to individual agents. The agents also need to satisfy their individual constraints. We propose a primal-dual update based decentralized algorithm for this problem. Under standard assumptions, we prove that the proposed algorithm achieves sublinear regret and constraint violation across the network. In other words, over a long enough time horizon, the decisions taken by the agents are, on average, as good as if all the information was revealed ahead of time. In addition, the individual constraint violations of the agents, averaged over time, are zero. In the next part of the dissertation (Chapters 4), we study distributed systems with a star-shaped topology. The problem we study is distributed nonconvex optimization. With the recent success of deep learning, coupled with the use of distributed systems to solve large-scale problems, this problem has gained prominence over the past decade. The recently proposed paradigm of Federated Learning (which has already been deployed by Google/Apple in Android/iOS phones) has further catalyzed research in this direction. The problem we consider is minimizing the average of local smooth, nonconvex functions. Each node has access only to its own loss function, but can communicate with the server, which aggregates updates from all the nodes, before distributing them to all the nodes. With the advent of more and more complex neural network architectures, these updates can be high dimensional. To save resources, the problem needs to be solved via communication-efficient approaches. We propose a novel algorithm, which combines the idea of variance-reduction, with the paradigm of carrying out multiple local updates at each node before averaging. We prove the convergence of the approach to a first-order stationary point. Our algorithm is optimal in terms of computation, and state-of-the-art in terms of the communication requirements. Lastly in Chapter 5, we consider the situation when the nodes do not have access to function gradients, and need to minimize the loss function using only function values. This problem lies in the domain of zeroth-order optimization. For simplicity of analysis, we study this problem only in the single-node case. This problem finds application in simulation-based optimization, and adversarial example generation for attacking deep neural networks. We propose a novel function value based gradient estimator, which has better variance, and better query-efficiency compared to existing estimators. The proposed estimator covers the most commonly used existing estimators as special cases. We conduct a comprehensive convergence analysis under different conditions. We also demonstrate its effectiveness through a real-world application to generating adversarial examples from a black-box deep neural network

    A Comparison of Parametric and Sample-Based Message Representation in Cooperative Localization

    Get PDF
    Location awareness is a key enabling feature and fundamental challenge in present and future wireless networks. Most existing localization methods rely on existing infrastructure and thus lack the flexibility and robustness necessary for large ad hoc networks. In this paper, we build upon SPAWN (sum-product algorithm over a wireless network), which determines node locations through iterative message passing, but does so at a high computational cost. We compare different message representations for SPAWN in terms of performance and complexity and investigate several types of cooperation based on censoring. Our results, based on experimental data with ultra-wideband (UWB) nodes, indicate that parametric message representation combined with simple censoring can give excellent performance at relatively low complexity
    • …
    corecore