655 research outputs found

    Learning for Multi-robot Cooperation in Partially Observable Stochastic Environments with Macro-actions

    Get PDF
    This paper presents a data-driven approach for multi-robot coordination in partially-observable domains based on Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) and macro-actions (MAs). Dec-POMDPs provide a general framework for cooperative sequential decision making under uncertainty and MAs allow temporally extended and asynchronous action execution. To date, most methods assume the underlying Dec-POMDP model is known a priori or a full simulator is available during planning time. Previous methods which aim to address these issues suffer from local optimality and sensitivity to initial conditions. Additionally, few hardware demonstrations involving a large team of heterogeneous robots and with long planning horizons exist. This work addresses these gaps by proposing an iterative sampling based Expectation-Maximization algorithm (iSEM) to learn polices using only trajectory data containing observations, MAs, and rewards. Our experiments show the algorithm is able to achieve better solution quality than the state-of-the-art learning-based methods. We implement two variants of multi-robot Search and Rescue (SAR) domains (with and without obstacles) on hardware to demonstrate the learned policies can effectively control a team of distributed robots to cooperate in a partially observable stochastic environment.Comment: Accepted to the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017

    Effective Approximations for Spatial Task Allocation Problems

    Get PDF
    Although multi-robot systems have received substantial research attention in recent years, multi-robot coordination still remains a difficult task. Especially, when dealing with spatially distributed tasks and many robots, central control quickly becomes infeasible due to the exponential explosion in the number of joint actions and states. We propose a general algorithm that allows for distributed control, that overcomes the exponential growth in the number of joint actions by aggregating the effect of other agents in the system into a probabilistic model, called subjective approximations, and then choosing the best response. We show for a multi-robot grid-world how the algorithm can be implemented in the well studied Multiagent Markov Decision Process framework, as a sub-class called spatial task allocation problems (SPATAPs). In this framework, we show how to tackle SPATAPs using online, distributed planning by combining subjective agent approximations with restriction of attention to current tasks in the world. An empirical evaluation shows that the combination of both strategies allows to scale to very large problems, while providing near-optimal solutions

    Effective Approximations for Multi-Robot Coordination in Spatially Distributed Tasks

    Get PDF
    Although multi-robot systems have received substantial research attention in recent years, multi-robot coordination still remains a difficult task. Especially, when dealing with spatially distributed tasks and many robots, central control quickly becomes infeasible due to the exponential explosion in the number of joint actions and states. We propose a general algorithm that allows for distributed control, that overcomes the exponential growth in the number of joint actions by aggregating the effect of other agents in the system into a probabilistic model, called subjective approximations, and then choosing the best response. We show for a multi-robot grid-world how the algorithm can be implemented in the well studied Multiagent Markov Decision Process framework, as a sub-class called spatial task allocation problems (SPATAPs). In this framework, we show how to tackle SPATAPs using online, distributed planning by combining subjective agent approximations with restriction of attention to current tasks in the world. An empirical evaluation shows that the combination of both strategies allows to scale to very large problems, while providing near-optimal solutions

    Making friends on the fly : advances in ad hoc teamwork

    Get PDF
    textGiven the continuing improvements in design and manufacturing processes in addition to improvements in artificial intelligence, robots are being deployed in an increasing variety of environments for longer periods of time. As the number of robots grows, it is expected that they will encounter and interact with other robots. Additionally, the number of companies and research laboratories producing these robots is increasing, leading to the situation where these robots may not share a common communication or coordination protocol. While standards for coordination and communication may be created, we expect that any standards will lag behind the state-of-the-art protocols and robots will need to additionally reason intelligently about their teammates with limited information. This problem motivates the area of ad hoc teamwork in which an agent may potentially cooperate with a variety of teammates in order to achieve a shared goal. We argue that agents that effectively reason about ad hoc teamwork need to exhibit three capabilities: 1) robustness to teammate variety, 2) robustness to diverse tasks, and 3) fast adaptation. This thesis focuses on addressing all three of these challenges. In particular, this thesis introduces algorithms for quickly adapting to unknown teammates that enable agents to react to new teammates without extensive observations. The majority of existing multiagent algorithms focus on scenarios where all agents share coordination and communication protocols. While previous research on ad hoc teamwork considers some of these three challenges, this thesis introduces a new algorithm, PLASTIC, that is the first to address all three challenges in a single algorithm. PLASTIC adapts quickly to unknown teammates by reusing knowledge it learns about previous teammates and exploiting any expert knowledge available. Given this knowledge, PLASTIC selects which previous teammates are most similar to the current ones online and uses this information to adapt to their behaviors. This thesis introduces two instantiations of PLASTIC. The first is a model-based approach, PLASTIC-Model, that builds models of previous teammates' behaviors and plans online to determine the best course of action. The second uses a policy-based approach, PLASTIC-Policy, in which it learns policies for cooperating with past teammates and selects from among these policies online. Furthermore, we introduce a new transfer learning algorithm, TwoStageTransfer, that allows transferring knowledge from many past teammates while considering how similar each teammate is to the current ones. We theoretically analyze the computational tractability of PLASTIC-Model in a number of scenarios with unknown teammates. Additionally, we empirically evaluate PLASTIC in three domains that cover a spread of possible settings. Our evaluations show that PLASTIC can learn to communicate with unknown teammates using a limited set of messages, coordinate with externally-created teammates that do not reason about ad hoc teams, and act intelligently in domains with continuous states and actions. Furthermore, these evaluations show that TwoStageTransfer outperforms existing transfer learning algorithms and enables PLASTIC to adapt even better to new teammates. We also identify three dimensions that we argue best describe ad hoc teamwork scenarios. We hypothesize that these dimensions are useful for analyzing similarities among domains and determining which can be tackled by similar algorithms in addition to identifying avenues for future research. The work presented in this thesis represents an important step towards enabling agents to adapt to unknown teammates in the real world. PLASTIC significantly broadens the robustness of robots to their teammates and allows them to quickly adapt to new teammates by reusing previously learned knowledge.Computer Science

    TOKEN-BASED APPROACH FOR SCALABLE TEAMCOORDINATION

    Get PDF
    To form a cooperative multiagent team, autonomous agents are required to harmonize activities and make the best use of exclusive resources to achieve their common goal. In addition, to handle uncertainty and quickly respond to external environmental events, they should share knowledge and sensor in formation. Unlike small team coordination, agents in scalable team must limit the amount of their communications while maximizing team performance. Communication decisions are critical to scalable-team coordination because agents should target their communications, but these decisions cannot be supported by a precise model or by complete team knowledge.The hypothesis of my thesis is: local routing of tokens encapsulating discrete elements of control, based only on decentralized local probability decision models, will lead to efficient scalable coordination with several hundreds of agents. In my research, coordination controls including all domain knowledge, tasks and exclusive resources are encapsulated into tokens. By passing tokens around, agents transfer team controls encapsulated in the tokens. The team benefits when a token is passed to an agent who can make use of it, but communications incur costs. Hence, no single agent has sole responsible over any shared decision. The key problem lies in how agents make the correct decisions to target communications and pass tokens so that they will potentially benefit the team most when considering communication costs.My research on token-based coordination algorithm starts from the investigation of random walk of token movement. I found a little increase of the probabilities that agents make the right decision to pass a token, the overall efficiency of the token movement could be greatly enhanced. Moreover, if token movements are modeled as a Markov chain, I found that the efficiency of passing tokens could be significantly varied based on different network topologies.My token-based algorithm starts at the investigation of each single decision theoretic agents. Although under the uncertainties that exist in large multiagent teams, agents cannot act optimal, it is still feasible to build a probability model for each agents to rationally pass tokens. Specifically, this decision only allow agent to pass tokens over an associate network where only a few of team members are considered as token receiver.My proposed algorithm will build each agent's individual decision model based on all of its previously received tokens. This model will not require the complete knowledge of the team. The key idea is that I will make use of the domain relationships between pairs of coordination controls. Previously received tokens will help the receiver to infer whether the sender could benefit the team if a related token is received. Therefore, each token is used to improve the routing of other tokens, leading to a dramatic performance improvement when more tokens are added. By exploring the relationships between different types of coordination controls, an integrated coordination algorithm will be built, and an improvement of one aspect of coordination will enhance the performance of the others

    Bayesian learning for multi-agent coordination

    No full text
    Multi-agent systems draw together a number of significant trends in modern technology: ubiquity, decentralisation, openness, dynamism and uncertainty. As work in these fields develops, such systems face increasing challenges. Two particular challenges are decision making in uncertain and partially-observable environments, and coordination with other agents in such environments. Although uncertainty and coordination have been tackled as separate problems, formal models for an integrated approach are typically restricted to simple classes of problem and are not scalable to problems with tens of agents and millions of states.We improve on these approaches by extending a principled Bayesian model into more challenging domains, using Bayesian networks to visualise specific cases of the model and thus as an aid in deriving the update equations for the system. One approach which has been shown to scale well for networked offline problems uses finite state machines to model other agents. We used this insight to develop an approximate scalable algorithm applicable to our general model, in combination with adapting a number of existing approximation techniques, including state clustering.We examine the performance of this approximate algorithm on several cases of an urban rescue problem with respect to differing problem parameters. Specifically, we consider first scenarios where agents are aware of the complete situation, but are not certain about the behaviour of others; that is, our model with all elements but the actions observable. Secondly, we examine the more complex case where agents can see the actions of others, but cannot see the full state and thus are not sure about the beliefs of others. Finally, we look at the performance of the partially observable state model when the system is dynamic or open. We find that our best response algorithm consistently outperforms a handwritten strategy for the problem, more noticeably as the number of agents and the number of states involved in the problem increase

    Multiagent reactive plan application learning in dynamic environments

    Get PDF

    Robust distributed planning strategies for autonomous multi-agent teams

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012.Cataloged from department-submitted PDF version of thesis. This electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 225-244).The increased use of autonomous robotic agents, such as unmanned aerial vehicles (UAVs) and ground rovers, for complex missions has motivated the development of autonomous task allocation and planning methods that ensure spatial and temporal coordination for teams of cooperating agents. The basic problem can be formulated as a combinatorial optimization (mixed-integer program) involving nonlinear and time-varying system dynamics. For most problems of interest, optimal solution methods are computationally intractable (NP-Hard), and centralized planning approaches, which usually require high bandwidth connections with a ground station (e.g. to transmit received sensor data, and to dispense agent plans), are resource intensive and react slowly to local changes in dynamic environments. Distributed approximate algorithms, where agents plan individually and coordinate with each other locally through consensus protocols, can alleviate many of these issues and have been successfully used to develop real-time conflict-free solutions for heterogeneous networked teams. An important issue associated with autonomous planning is that many of the algorithms rely on underlying system models and parameters which are often subject to uncertainty. This uncertainty can result from many sources including: inaccurate modeling due to simplifications, assumptions, and/or parameter errors; fundamentally nondeterministic processes (e.g. sensor readings, stochastic dynamics); and dynamic local information changes. As discrepancies between the planner models and the actual system dynamics increase, mission performance typically degrades. The impact of these discrepancies on the overall quality of the plan is usually hard to quantify in advance due to nonlinear effects, coupling between tasks and agents, and interdependencies between system constraints. However, if uncertainty models of planning parameters are available, they can be leveraged to create robust plans that explicitly hedge against the inherent uncertainty given allowable risk thresholds. This thesis presents real-time robust distributed planning strategies that can be used to plan for multi-agent networked teams operating in stochastic and dynamic environments. One class of distributed combinatorial planning algorithms involves using auction algorithms augmented with consensus protocols to allocate tasks amongst a team of agents while resolving conflicting assignments locally between the agents. A particular algorithm in this class is the Consensus-Based Bundle Algorithm (CBBA), a distributed auction protocol that guarantees conflict-free solutions despite inconsistencies in situational awareness across the team. CBBA runs in polynomial time, demonstrating good scalability with increasing numbers of agents and tasks. This thesis builds upon the CBBA framework to address many realistic considerations associated with planning for networked teams, including time-critical mission constraints, limited communication between agents, and stochastic operating environments. A particular focus of this work is a robust extension to CBBA that handles distributed planning in stochastic environments given probabilistic parameter models and different stochastic metrics. The Robust CBBA algorithm proposed in this thesis provides a distributed real-time framework which can leverage different stochastic metrics to hedge against parameter uncertainty. In mission scenarios where low probability of failure is required, a chance-constrained stochastic metric can be used to provide probabilistic guarantees on achievable mission performance given allowable risk thresholds. This thesis proposes a distributed chance-constrained approximation that can be used within the Robust CBBA framework, and derives constraints on individual risk allocations to guarantee equivalence between the centralized chance-constrained optimization and the distributed approximation. Different risk allocation strategies for homogeneous and heterogeneous teams are proposed that approximate the agent and mission score distributions a priori, and results are provided showing improved performance in time-critical mission scenarios given allowable risk thresholds.by Sameera S. Ponda.Ph.D

    Multiagent planning with Bayesian nonparametric asymptotics

    Get PDF
    Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 95-105).Autonomous multiagent systems are beginning to see use in complex, changing environments that cannot be completely specified a priori. In order to be adaptive to these environments and avoid the fragility associated with making too many a priori assumptions, autonomous systems must incorporate some form of learning. However, learning techniques themselves often require structural assumptions to be made about the environment in which a system acts. Bayesian nonparametrics, on the other hand, possess structural flexibility beyond the capabilities of past parametric techniques commonly used in planning systems. This extra flexibility comes at the cost of increased computational cost, which has prevented the widespread use of Bayesian nonparametrics in realtime autonomous planning systems. This thesis provides a suite of algorithms for tractable, realtime, multiagent planning under uncertainty using Bayesian nonparametrics. The first contribution is a multiagent task allocation framework for tasks specified as Markov decision processes. This framework extends past work in multiagent allocation under uncertainty by allowing exact distribution propagation instead of sampling, and provides an analytic solution time/quality tradeoff for system designers. The second contribution is the Dynamic Means algorithm, a novel clustering method based upon Bayesian nonparametrics for realtime, lifelong learning on batch-sequential data containing temporally evolving clusters. The relationship with previous clustering models yields a modelling scheme that is as fast as typical classical clustering approaches while possessing the flexibility and representational power of Bayesian nonparametrics. The final contribution is Simultaneous Clustering on Representation Expansion (SCORE), which is a tractable model-based reinforcement learning algorithm for multimodel planning problems, and serves as a link between the aforementioned task allocation framework and the Dynamic Means algorithmby Trevor D. J. Campbell.S.M

    Aprendizagem de coordenação em sistemas multi-agente

    Get PDF
    The ability for an agent to coordinate with others within a system is a valuable property in multi-agent systems. Agents either cooperate as a team to accomplish a common goal, or adapt to opponents to complete different goals without being exploited. Research has shown that learning multi-agent coordination is significantly more complex than learning policies in singleagent environments, and requires a variety of techniques to deal with the properties of a system where agents learn concurrently. This thesis aims to determine how can machine learning be used to achieve coordination within a multi-agent system. It asks what techniques can be used to tackle the increased complexity of such systems and their credit assignment challenges, how to achieve coordination, and how to use communication to improve the behavior of a team. Many algorithms for competitive environments are tabular-based, preventing their use with high-dimension or continuous state-spaces, and may be biased against specific equilibrium strategies. This thesis proposes multiple deep learning extensions for competitive environments, allowing algorithms to reach equilibrium strategies in complex and partially-observable environments, relying only on local information. A tabular algorithm is also extended with a new update rule that eliminates its bias against deterministic strategies. Current state-of-the-art approaches for cooperative environments rely on deep learning to handle the environment’s complexity and benefit from a centralized learning phase. Solutions that incorporate communication between agents often prevent agents from being executed in a distributed manner. This thesis proposes a multi-agent algorithm where agents learn communication protocols to compensate for local partial-observability, and remain independently executed. A centralized learning phase can incorporate additional environment information to increase the robustness and speed with which a team converges to successful policies. The algorithm outperforms current state-of-the-art approaches in a wide variety of multi-agent environments. A permutation invariant network architecture is also proposed to increase the scalability of the algorithm to large team sizes. Further research is needed to identify how can the techniques proposed in this thesis, for cooperative and competitive environments, be used in unison for mixed environments, and whether they are adequate for general artificial intelligence.A capacidade de um agente se coordenar com outros num sistema é uma propriedade valiosa em sistemas multi-agente. Agentes cooperam como uma equipa para cumprir um objetivo comum, ou adaptam-se aos oponentes de forma a completar objetivos egoístas sem serem explorados. Investigação demonstra que aprender coordenação multi-agente é significativamente mais complexo que aprender estratégias em ambientes com um único agente, e requer uma variedade de técnicas para lidar com um ambiente onde agentes aprendem simultaneamente. Esta tese procura determinar como aprendizagem automática pode ser usada para encontrar coordenação em sistemas multi-agente. O documento questiona que técnicas podem ser usadas para enfrentar a superior complexidade destes sistemas e o seu desafio de atribuição de crédito, como aprender coordenação, e como usar comunicação para melhorar o comportamento duma equipa. Múltiplos algoritmos para ambientes competitivos são tabulares, o que impede o seu uso com espaços de estado de alta-dimensão ou contínuos, e podem ter tendências contra estratégias de equilíbrio específicas. Esta tese propõe múltiplas extensões de aprendizagem profunda para ambientes competitivos, permitindo a algoritmos atingir estratégias de equilíbrio em ambientes complexos e parcialmente-observáveis, com base em apenas informação local. Um algoritmo tabular é também extendido com um novo critério de atualização que elimina a sua tendência contra estratégias determinísticas. Atuais soluções de estado-da-arte para ambientes cooperativos têm base em aprendizagem profunda para lidar com a complexidade do ambiente, e beneficiam duma fase de aprendizagem centralizada. Soluções que incorporam comunicação entre agentes frequentemente impedem os próprios de ser executados de forma distribuída. Esta tese propõe um algoritmo multi-agente onde os agentes aprendem protocolos de comunicação para compensarem por observabilidade parcial local, e continuam a ser executados de forma distribuída. Uma fase de aprendizagem centralizada pode incorporar informação adicional sobre ambiente para aumentar a robustez e velocidade com que uma equipa converge para estratégias bem-sucedidas. O algoritmo ultrapassa abordagens estado-da-arte atuais numa grande variedade de ambientes multi-agente. Uma arquitetura de rede invariante a permutações é também proposta para aumentar a escalabilidade do algoritmo para grandes equipas. Mais pesquisa é necessária para identificar como as técnicas propostas nesta tese, para ambientes cooperativos e competitivos, podem ser usadas em conjunto para ambientes mistos, e averiguar se são adequadas a inteligência artificial geral.Apoio financeiro da FCT e do FSE no âmbito do III Quadro Comunitário de ApoioPrograma Doutoral em Informátic
    corecore