442 research outputs found

    LIPADE's Research Efforts Wireless Body Sensor Networks

    Get PDF

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    A Case for Time Slotted Channel Hopping for ICN in the IoT

    Full text link
    Recent proposals to simplify the operation of the IoT include the use of Information Centric Networking (ICN) paradigms. While this is promising, several challenges remain. In this paper, our core contributions (a) leverage ICN communication patterns to dynamically optimize the use of TSCH (Time Slotted Channel Hopping), a wireless link layer technology increasingly popular in the IoT, and (b) make IoT-style routing adaptive to names, resources, and traffic patterns throughout the network--both without cross-layering. Through a series of experiments on the FIT IoT-LAB interconnecting typical IoT hardware, we find that our approach is fully robust against wireless interference, and almost halves the energy consumed for transmission when compared to CSMA. Most importantly, our adaptive scheduling prevents the time-slotted MAC layer from sacrificing throughput and delay

    Effect of steel fibre volume fraction on thermal performance of lightweight foamed mortar (LFM) at ambient temperature

    Get PDF
    Lightweight foamed mortar (LFM) has grow into utmost commercial building material in the construction industry for non-structural and semi-structural applications owing to its reduced self-weight, flowability, stability and excellent thermal insulation properties. Hence, this study was conducted with the aims to develop an alternative for conventional concrete bricks and blocks for non-structural and semi-structural applications of masonry. Lightweight foamed mortar (LFM) is either a cement paste or mortar, relegated as lightweight concrete, in which suitable foaming agent entraps the air-voids in mortar. It therefore has a wide range of applications such as material for wall blocks or panels, floor & roof screeds, trench reinstatement, road foundations and voids filling. This research focuses on experimental investigation of thermal properties of LFM with inclusion of relatively low volume fraction (0.2% and 0.4%) of steel fibre at ambient temperature. There are three parameters will be scrutinized such as thermal conductivity, thermal diffusivity as well as the specific heat capacity. There are two densities of 600kg/m3 and 1200kg/m3 had been cast and tested. The mix design proportion of LFM used for cement, aggregate and water ratio was 1: 1.5:0.45. The experimental results had indicated that the thermal conductivity, thermal diffusivity and specific heat value slightly higher than control mix due to the addition of steel fibres. For instance, thermal conductivity, diffusivity and specific heat of 600 kg/m3 density control mix were 0.212W/mK, 0.477mm2/s and 545 J/kg◦C respectively. When 0.2% volume fraction of steel fiber was added in the mix of 600 kg/m3 density, the value of thermal conductivity, diffusivity and specific heat were increased to 0.235W/mK, 0.583mm2/s and 578 J/kg◦C correspondingly. This is due to the characteristic of the steel fibre application in which steel fibre is good as heat conductor and excellent in absorbing heat. Therefore there is a potential of utilizing steel fiber in cement based material like LFM for components that needs excellent heat absorption capacity

    A Centralized Energy Management System for Wireless Sensor Networks

    Get PDF
    This document presents the Centralized Energy Management System (CEMS), a dynamic fault-tolerant reclustering protocol for wireless sensor networks. CEMS reconfigures a homogeneous network both periodically and in response to critical events (e.g. cluster head death). A global TDMA schedule prevents costly retransmissions due to collision, and a genetic algorithm running on the base station computes cluster assignments in concert with a head selection algorithm. CEMS\u27 performance is compared to the LEACH-C protocol in both normal and failure-prone conditions, with an emphasis on each protocol\u27s ability to recover from unexpected loss of cluster heads
    corecore