3,933 research outputs found

    Efficient Subgraph Matching on Billion Node Graphs

    Full text link
    The ability to handle large scale graph data is crucial to an increasing number of applications. Much work has been dedicated to supporting basic graph operations such as subgraph matching, reachability, regular expression matching, etc. In many cases, graph indices are employed to speed up query processing. Typically, most indices require either super-linear indexing time or super-linear indexing space. Unfortunately, for very large graphs, super-linear approaches are almost always infeasible. In this paper, we study the problem of subgraph matching on billion-node graphs. We present a novel algorithm that supports efficient subgraph matching for graphs deployed on a distributed memory store. Instead of relying on super-linear indices, we use efficient graph exploration and massive parallel computing for query processing. Our experimental results demonstrate the feasibility of performing subgraph matching on web-scale graph data.Comment: VLDB201

    Distributed-Memory Breadth-First Search on Massive Graphs

    Full text link
    This chapter studies the problem of traversing large graphs using the breadth-first search order on distributed-memory supercomputers. We consider both the traditional level-synchronous top-down algorithm as well as the recently discovered direction optimizing algorithm. We analyze the performance and scalability trade-offs in using different local data structures such as CSR and DCSC, enabling in-node multithreading, and graph decompositions such as 1D and 2D decomposition.Comment: arXiv admin note: text overlap with arXiv:1104.451

    Jabba: hybrid error correction for long sequencing reads using maximal exact matches

    Get PDF
    Third generation sequencing platforms produce longer reads with higher error rates than second generation sequencing technologies. While the improved read length can provide useful information for downstream analysis, underlying algorithms are challenged by the high error rate. Error correction methods in which accurate short reads are used to correct noisy long reads appear to be attractive to generate high-quality long reads. Methods that align short reads to long reads do not optimally use the information contained in the second generation data, and suffer from large runtimes. Recently, a new hybrid error correcting method has been proposed, where the second generation data is first assembled into a de Bruijn graph, on which the long reads are then aligned. In this context we present Jabba, a hybrid method to correct long third generation reads by mapping them on a corrected de Bruijn graph that was constructed from second generation data. Unique to our method is that this mapping is constructed with a seed and extend methodology, using maximal exact matches as seeds. In addition to benchmark results, certain theoretical results concerning the possibilities and limitations of the use of maximal exact matches in the context of third generation reads are presented

    Using Structure Indices for Efficient Approximation of Network Properties

    Get PDF
    Statistics on networks have become vital to the study of relational data drawn from areas including bibliometrics, fraud detection, bioinformatics, and the Internet. Calculating many of the most important measures—such as betweenness centrality, closeness centrality, and graph diameter—requires identifying short paths in these networks. However, finding these short paths can be intractable for even moderate-size networks. We introduce the concept of a network structure index (NSI), a composition of (1) a set of annotations on every node in the network and (2) a function that uses the annotations to estimate graph distance between pairs of nodes. We present several varieties of NSIs, examine their time and space complexity, and analyze their performance on synthetic and real data sets. We show that creating an NSI for a given network enables extremely efficient and accurate estimation of a wide variety of network statistics on that network

    Efficient Computation of Distance Labeling for Decremental Updates in Large Dynamic Graphs

    Get PDF
    Since today's real-world graphs, such as social network graphs, are evolving all the time, it is of great importance to perform graph computations and analysis in these dynamic graphs. Due to the fact that many applications such as social network link analysis with the existence of inactive users need to handle failed links or nodes, decremental computation and maintenance for graphs is considered a challenging problem. Shortest path computation is one of the most fundamental operations for managing and analyzing large graphs. A number of indexing methods have been proposed to answer distance queries in static graphs. Unfortunately, there is little work on answering such queries for dynamic graphs. In this paper, we focus on the problem of computing the shortest path distance in dynamic graphs, particularly on decremental updates (i.e., edge deletions). We propose maintenance algorithms based on distance labeling, which can handle decremental updates efficiently. By exploiting properties of distance labeling in original graphs, we are able to efficiently maintain distance labeling for new graphs. We experimentally evaluate our algorithms using eleven real-world large graphs and confirm the effectiveness and efficiency of our approach. More specifically, our method can speed up index re-computation by up to an order of magnitude compared with the state-of-the-art method, Pruned Landmark Labeling (PLL)
    • …
    corecore