127,370 research outputs found

    Smart communications network management through a synthesis of distributed intelligence and information

    Full text link
    Demands on communications networks to support bundled, interdependent communications services (data, voice, video) are increasing in complexity. Smart network management techniques are required to meet this demand. Such management techniques are envisioned to be based on two main technologies: (i) embedded intelligence; and (ii) up-to-the-millisecond delivery of performance information. This paper explores the idea of delivery of intelligent network management as a synthesis of distributed intelligence and information, obtained through information mining of network performance. © 2008 International Federation for Information Processing

    Federated Learning for Malware Detection in IoT Devices

    Full text link
    The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of intelligent services and applications empowered by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may not be feasible in realistic application scenarios due to the high scalability of modern IoT networks and growing data privacy concerns. Federated Learning (FL) has emerged as a distributed collaborative AI approach that can enable many intelligent IoT applications, by allowing for AI training at distributed IoT devices without the need for data sharing. In this article, we provide a comprehensive survey of the emerging applications of FL in IoT networks, beginning from an introduction to the recent advances in FL and IoT to a discussion of their integration. Particularly, we explore and analyze the potential of FL for enabling a wide range of IoT services, including IoT data sharing, data offloading and caching, attack detection, localization, mobile crowdsensing, and IoT privacy and security. We then provide an extensive survey of the use of FL in various key IoT applications such as smart healthcare, smart transportation, Unmanned Aerial Vehicles (UAVs), smart cities, and smart industry. The important lessons learned from this review of the FL-IoT services and applications are also highlighted. We complete this survey by highlighting the current challenges and possible directions for future research in this booming area

    Towards 6G: Key technological directions

    Get PDF
    Sixth-generation mobile networks (6G) are expected to reach extreme communication capabilities to realize emerging applications demanded by the future society. This paper focuses on six technological directions towards 6G, namely, intent-based networking, THz communication, artificial intelligence, distributed ledger technology/blockchain, smart devices and gadget-free communication, and quantum communication. These technologies will enable 6G to be more capable of catering to the demands of future network services and applications. Each of these technologies is discussed highlighting recent developments, applicability in 6G, and deployment challenges. It is envisaged that this work will facilitate 6G related research and developments, especially along the six technological directions discussed in the paper

    Towards Energy Consumption and Carbon Footprint Testing for AI-driven IoT Services

    Full text link
    Energy consumption and carbon emissions are expected to be crucial factors for Internet of Things (IoT) applications. Both the scale and the geo-distribution keep increasing, while Artificial Intelligence (AI) further penetrates the "edge" in order to satisfy the need for highly-responsive and intelligent services. To date, several edge/fog emulators are catering for IoT testing by supporting the deployment and execution of AI-driven IoT services in consolidated test environments. These tools enable the configuration of infrastructures so that they closely resemble edge devices and IoT networks. However, energy consumption and carbon emissions estimations during the testing of AI services are still missing from the current state of IoT testing suites. This study highlights important questions that developers of AI-driven IoT services are in need of answers, along with a set of observations and challenges, aiming to help researchers designing IoT testing and benchmarking suites to cater to user needs.Comment: Presented at the 2nd International Workshop on Testing Distributed Internet of Things Systems (TDIS 2022
    • …
    corecore