77 research outputs found

    Design of optical burst switches based on dual shuffle-exchange network and deflection routing.

    Get PDF
    Choy Man Ting.Thesis (M.Phil.)--Chinese University of Hong Kong, 2003.Includes bibliographical references (leaves 66-69).Abstracts in English and Chinese.Acknowledgments --- p.iiAbstract --- p.vTable of Contents --- p.viiList of figures --- p.viiiChapter Chapter 1 --- p.12Chapter 1.1 --- OBS Network Architecture --- p.3Chapter 1.2 --- Offset Time and Reservation Schemes --- p.5Chapter 1.3 --- Research Objectives --- p.7Chapter 1.4 --- Overview --- p.8Chapter Chapter 2 --- p.9Chapter 2.1 --- WDM crossbar architectures --- p.9Chapter 2.2 --- Switch Based on Optical Crossbars --- p.10Chapter 2.3 --- Switch Based on Wavelength Grating Routers --- p.11Chapter Chapter 3 --- p.14Chapter 3.1 --- Basics of Dual Shuffle Exchange Network --- p.14Chapter 3.2 --- Dual Shuffle-exchange Network --- p.16Chapter 3.3 --- Proposed Architecture based on DSN --- p.19Chapter 3.4 --- Analysis on blocking due to output contention --- p.20Chapter 3.5 --- Implementation issues on the 4x4 switching module --- p.23Chapter 3.6 --- Analysis: Non-blocking versus banyan --- p.25Chapter Chapter 4 --- p.30Chapter 4.1 --- First Scheme --- p.30Chapter 4.2 --- Simulation on the first scheme --- p.33Chapter 4.3 --- Second Scheme: Tunable wavelength converter --- p.37Chapter 4.4 --- Third Scheme: Route to specific wavelength port --- p.42Chapter 4.5 --- Analysis on blocking due to insufficient stages --- p.46Chapter Chapter 5 --- p.49Chapter 5.1 --- Delay analysis of DSN --- p.49Chapter 5.2 --- Vertical Expansion --- p.51Chapter 5.3 --- Simulation results on vertical expansion --- p.52Chapter 5.4 --- Building DSN with 8x8 MEMS switches --- p.54Chapter 5.5 --- Prove of the proposed Quarter shuffle network --- p.56Chapter 5.6 --- Comparison between Quarter shuffle and doubled links approaches --- p.58Chapter Chapter 6 --- p.64Conclusion --- p.64Bibliography --- p.6

    Optical packet switching using multi-wavelength labels

    Get PDF

    The Effect Of Hot Spots On The Performance Of Mesh--Based Networks

    Get PDF
    Direct network performance is affected by different design parameters which include number of virtual channels, number of ports, routing algorithm, switching technique, deadlock handling technique, packet size, and buffer size. Another factor that affects network performance is the traffic pattern. In this thesis, we study the effect of hotspot traffic on system performance. Specifically, we study the effect of hotspot factor, hotspot number, and hot spot location on the performance of mesh-based networks. Simulations are run on two network topologies, both the mesh and torus. We pay more attention to meshes because they are widely used in commercial machines. Comparisons between oblivious wormhole switching and chaotic packet switching are reported. Overall packet switching proved to be more efficient in terms of throughput when compared to wormhole switching. In the case of uniform random traffic, it is shown that the differences between chaotic and oblivious routing are indistinguishable. Networks with low number of hotspots show better performance. As the number of hotspots increases network latency tends to increase. It is shown that when the hotspot factor increases, performance of packet switching is better than that of wormhole switching. It is also shown that the location of hotspots affects network performance particularly with the oblivious routers since their achieved latencies proved to be more vulnerable to changes in the hotspot location. It is also shown that the smaller the size of the network the earlier network saturation occurs. Further, it is shown that the chaos router’s adaptivity is useful in this case. Finally, for tori, performance is not greatly affected by hotspot presence. This is mostly due to the symmetric nature of tori

    Wavelength conversion in optical packet switching

    Get PDF
    A detailed traffic analysis of optical packet switch design is performed. Special consideration is given to the complexity of the optical buffering and the overall switch block structure is considered in general. Wavelength converters are shown to improve the traffic performance of the switch blocks for both random and bursty traffic. Furthermore, the traffic performance of switch blocks with add--drop sports has been assessed in a Shufflenetwork showing the advantage of having converters at the inlets. Finally, the aspect of synchronization is discussed through a proposal to operate the packet switch block asynchronously, i.e., without packet alignment at the input

    Analytical evaluation of improved access techniques in deflection routing networks

    Full text link

    DESIGN OF EFFICIENT PACKET MARKING-BASED CONGESTION MANAGEMENT TECHNIQUES FOR CLUSTER INTERCONNECTS

    Full text link
    El crecimiento de los computadores paralelos basados en redes de altas prestaciones ha aumentado el interés y esfuerzo de la comunidad investigadora en desarrollar nuevas técnicas que permitan obtener el mejor rendimiento de estas redes. En particular, el desarrollo de nuevas técnicas que permitan un encaminamiento eficiente y que reduzcan la latencia de los paquetes, aumentando así la productividad de la red. Sin embargo, una alta tasa de utilización de la red podría conllevar el que se conoce como "congestión de red", el cual puede causar una degradación del rendimiento. El control de la congestión en redes multietapa es un problema importante que no está completamente resuelto. Con el fin de evitar la degradación del rendimiento de la red cuando aparece congestión, se han propuesto diferentes mecanismos para el control de la congestión. Muchos de estos mecanismos están basados en notificación explícita de la congestión. Para este propósito, los switches detectan congestión y dependiendo de la estrategia aplicada, los paquetes son marcados con la finalidad de advertir a los nodos origenes. Como respuesta, los nodos origenes aplican acciones correctivas para ajustar su tasa de inyección de paquetes. El propósito de esta tesis es analizar las diferentes estratégias de detección y corrección de la congestión en redes multietapa, y proponer nuevos mecanismos de control de la congestión encaminados a este tipo de redes sin descarte de paquetes. Las nuevas propuestas están basadas en una estrategia más refinada de marcaje de paquetes en combinación con un conjunto de acciones correctivas justas que harán al mecanismo capaz de controlar la congestión de manera efectiva con independencia del grado de congestión y de las condiciones de tráfico.Ferrer Pérez, JL. (2012). DESIGN OF EFFICIENT PACKET MARKING-BASED CONGESTION MANAGEMENT TECHNIQUES FOR CLUSTER INTERCONNECTS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18197Palanci

    Design of Routers for Optical Burst Switched Networks

    Get PDF
    Optical Burst Switching (OBS) is an experimental network technology that enables the construction of very high capacity routers using optical data paths and electronic control. In this dissertation, we study the design of network components that are needed to build an OBS network. Specifically, we study the design of the switches that form the optical data path through the network. An OBS network that switches data across wavelength channels requires wave-length converting switches to construct an OBS router. We study one particular design of wavelength converting switches that uses tunable lasers and wavelength grating routers. This design is interesting because wavelength grating routers are passive devices and are much less complex and hence less expensive than optical crossbars. We show how the routing problem for these switches can be formulated as a combinatorial puzzle or game, in which the design of the game board determines key performance characteristics of the switch. In this disertation, we use this formu-lation to facilitate the design of switches and associated routing strategies with good performance. We then introduce time sliced optical burst switching (TSOBS), a variant of OBS that switches data in the time domain rather that the wavelength domain. This eliminates the need for wavelength converters, the largest single cost component of systems that switch in the wavelength domain. We study the performance of TSOBS networks and discuss various design issues. One of the main components that is needed to build a TSOBS router is an optical time slot interchanger (OTSI). We explore various design options for OTSIs. Finally, we discuss the issues involved in the design of network interfaces that transmit the data from hosts that use legacy protocols into a TSOBS network. Ag-gregation and load balancing are the main issues that determine the performance of a TSOBS network and we develop and evaluate methods for both
    corecore