10 research outputs found

    Outlier-Detection Based Robust Information Fusion for Networked Systems

    Full text link
    We consider state estimation for networked systems where measurements from sensor nodes are contaminated by outliers. A new hierarchical measurement model is formulated for outlier detection by integrating the outlier-free measurement model with a binary indicator variable. The binary indicator variable, which is assigned a beta-Bernoulli prior, is utilized to characterize if the sensor's measurement is nominal or an outlier. Based on the proposed outlier-detection measurement model, both centralized and decentralized information fusion filters are developed. Specifically, in the centralized approach, all measurements are sent to a fusion center where the state and outlier indicators are jointly estimated by employing the mean-field variational Bayesian inference in an iterative manner. In the decentralized approach, however, every node shares its information, including the prior and likelihood, only with its neighbors based on a hybrid consensus strategy. Then each node independently performs the estimation task based on its own and shared information. In addition, an approximation distributed solution is proposed to reduce the local computational complexity and communication overhead. Simulation results reveal that the proposed algorithms are effective in dealing with outliers compared with several recent robust solutions

    Visual / acoustic detection and localisation in embedded systems

    Get PDF
    ©Cranfield UniversityThe continuous miniaturisation of sensing and processing technologies is increasingly offering a variety of embedded platforms, enabling the accomplishment of a broad range of tasks using such systems. Motivated by these advances, this thesis investigates embedded detection and localisation solutions using vision and acoustic sensors. Focus is particularly placed on surveillance applications using sensor networks. Existing vision-based detection solutions for embedded systems suffer from the sensitivity to environmental conditions. In the literature, there seems to be no algorithm able to simultaneously tackle all the challenges inherent to real-world videos. Regarding the acoustic modality, many research works have investigated acoustic source localisation solutions in distributed sensor networks. Nevertheless, it is still a challenging task to develop an ecient algorithm that deals with the experimental issues, to approach the performance required by these systems and to perform the data processing in a distributed and robust manner. The movement of scene objects is generally accompanied with sound emissions with features that vary from an environment to another. Therefore, considering the combination of the visual and acoustic modalities would offer a significant opportunity for improving the detection and/or localisation using the described platforms. In the light of the described framework, we investigate in the first part of the thesis the use of a cost-effective visual based method that can deal robustly with the issue of motion detection in static, dynamic and moving background conditions. For motion detection in static and dynamic backgrounds, we present the development and the performance analysis of a spatio- temporal form of the Gaussian mixture model. On the other hand, the problem of motion detection in moving backgrounds is addressed by accounting for registration errors in the captured images. By adopting a robust optimisation technique that takes into account the uncertainty about the visual measurements, we show that high detection accuracy can be achieved. In the second part of this thesis, we investigate solutions to the problem of acoustic source localisation using a trust region based optimisation technique. The proposed method shows an overall higher accuracy and convergence improvement compared to a linear-search based method. More importantly, we show that through characterising the errors in measurements, which is a common problem for such platforms, higher accuracy in the localisation can be attained. The last part of this work studies the different possibilities of combining visual and acoustic information in a distributed sensors network. In this context, we first propose to include the acoustic information in the visual model. The obtained new augmented model provides promising improvements in the detection and localisation processes. The second investigated solution consists in the fusion of the measurements coming from the different sensors. An evaluation of the accuracy of localisation and tracking using a centralised/decentralised architecture is conducted in various scenarios and experimental conditions. Results have shown the capability of this fusion approach to yield higher accuracy in the localisation and tracking of an active acoustic source than by using a single type of data

    Bayesian framework for multiple acoustic source tracking

    Get PDF
    Acoustic source (speaker) tracking in the room environment plays an important role in many speech and audio applications such as multimedia, hearing aids and hands-free speech communication and teleconferencing systems; the position information can be fed into a higher processing stage for high-quality speech acquisition, enhancement of a specific speech signal in the presence of other competing talkers, or keeping a camera focused on the speaker in a video-conferencing scenario. Most of existing systems focus on the single source tracking problem, which assumes one and only one source is active all the time, and the state to be estimated is simply the source position. However, in practical scenarios, multiple speakers may be simultaneously active, and the tracking algorithm should be able to localise each individual source and estimate the number of sources. This thesis contains three contributions towards solutions to multiple acoustic source tracking in a moderate noisy and reverberant environment. The first contribution of this thesis is proposing a time-delay of arrival (TDOA) estimation approach for multiple sources. Although the phase transform (PHAT) weighted generalised cross-correlation (GCC) method has been employed to extract the TDOAs of multiple sources, it is primarily used for a single source scenario and its performance for multiple TDOA estimation has not been comprehensively studied. The proposed approach combines the degenerate unmixing estimation technique (DUET) and GCC method. Since the speech mixtures are assumed window-disjoint orthogonal (WDO) in the time-frequency domain, the spectrograms can be separated by employing DUET, and the GCC method can then be applied to the spectrogram of each individual source. The probabilities of detection and false alarm are also proposed to evaluate the TDOA estimation performance under a series of experimental parameters. Next, considering multiple acoustic sources may appear nonconcurrently, an extended Kalman particle filtering (EKPF) is developed for a special multiple acoustic source tracking problem, namely “nonconcurrent multiple acoustic tracking (NMAT)”. The extended Kalman filter (EKF) is used to approximate the optimum weights, and the subsequent particle filtering (PF) naturally takes the previous position estimates as well as the current TDOA measurements into account. The proposed approach is thus able to lock on the sharp change of the source position quickly, and avoid the tracking-lag in the general sequential importance resampling (SIR) PF. Finally, these investigations are extended into an approach to track the multiple unknown and time-varying number of acoustic sources. The DUET-GCC method is used to obtain the TDOA measurements for multiple sources and a random finite set (RFS) based Rao-blackwellised PF is employed and modified to track the sources. Each particle has a RFS form encapsulating the states of all sources and is capable of addressing source dynamics: source survival, new source appearance and source deactivation. A data association variable is defined to depict the source dynamic and its relation to the measurements. The Rao-blackwellisation step is used to decompose the state: the source positions are marginalised by using an EKF, and only the data association variable needs to be handled by a PF. The performances of all the proposed approaches are extensively studied under different noisy and reverberant environments, and are favorably comparable with the existing tracking techniques

    Bimodal sound source tracking applied to road traffic monitoring

    Get PDF
    The constant increase of road traffic requires closer and closer road network monitoring. The awareness of traffic characteristics in real time as well as its historical trends, facilitates decision-making for flow regulation, triggering relief operations, ensuring the motorists’ safety and contribute to optimize transport infrastructures. Today, the heterogeneity of the available data makes their processing complex and expensive (multiple sensors with different technologies, placed in different locations, with their own data format, unsynchronized, etc.). This leads metrologists to develop “smarter” monitoring devices, i.e. capable of providing all the necessary data synchronized from a single measurement point, with no impact on the flow road itself and ideally without complex installation. This work contributes to achieve such an objective through the development of a passive, compact, non-intrusive, acoustic-based system composed of a microphone array with a few number of elements placed on the roadside. The proposed signal processing techniques enable vehicle detection, the estimation of their speed as well as the estimation of their wheelbase length as they pass by. Sound sources emitted by tyre/road interactions are localized using generalized cross-correlation functions between sensor pairs. These successive correlation measurements are filtered using a sequential Monte Carlo method (particle filter) enabling, on one hand, the simultaneous tracking of multiple vehicles (that follow or pass each other) and on the other hand, a discrimination between useful sound sources and interfering noises. This document focuses on two-axle road vehicles only. The two tyre/road interactions (front and rear) observed by a microphone array on the roadside are modeled as two stochastic, zero-mean and uncorrelated processes, spatially disjoint by the wheelbase length. This bimodal sound source model defines a specific particle filter, called bimodal particle filter, which is presented here. Compared to the classical (unimodal) particle filter, a better robustness for speed estimation is achieved especially in cases of harsh observation. Moreover the proposed algorithm enables the wheelbase length estimation through purely passive acoustic measurement. An innovative microphone array design methodology, based on a mathematical expression of the observation and the tracking methodology itself is also presented. The developed algorithms are validated and assessed through in-situ measurements. Estimates provided by the acoustical signal processing are compared with standard radar measurements and confronted to video monitoring images. Although presented in a purely road-related applied context, we feel that the developed methodologies can be, at least partly, applied to rail, aerial, underwater or industrial metrology

    Tracking interacting targets in multi-modal sensors

    Get PDF
    PhDObject tracking is one of the fundamental tasks in various applications such as surveillance, sports, video conferencing and activity recognition. Factors such as occlusions, illumination changes and limited field of observance of the sensor make tracking a challenging task. To overcome these challenges the focus of this thesis is on using multiple modalities such as audio and video for multi-target, multi-modal tracking. Particularly, this thesis presents contributions to four related research topics, namely, pre-processing of input signals to reduce noise, multi-modal tracking, simultaneous detection and tracking, and interaction recognition. To improve the performance of detection algorithms, especially in the presence of noise, this thesis investigate filtering of the input data through spatio-temporal feature analysis as well as through frequency band analysis. The pre-processed data from multiple modalities is then fused within Particle filtering (PF). To further minimise the discrepancy between the real and the estimated positions, we propose a strategy that associates the hypotheses and the measurements with a real target, using a Weighted Probabilistic Data Association (WPDA). Since the filtering involved in the detection process reduces the available information and is inapplicable on low signal-to-noise ratio data, we investigate simultaneous detection and tracking approaches and propose a multi-target track-beforedetect Particle filtering (MT-TBD-PF). The proposed MT-TBD-PF algorithm bypasses the detection step and performs tracking in the raw signal. Finally, we apply the proposed multi-modal tracking to recognise interactions between targets in regions within, as well as outside the cameras’ fields of view. The efficiency of the proposed approaches are demonstrated on large uni-modal, multi-modal and multi-sensor scenarios from real world detections, tracking and event recognition datasets and through participation in evaluation campaigns

    Wi-Fi based people tracking in challenging environments

    Get PDF
    People tracking is a key building block in many applications such as abnormal activity detection, gesture recognition, and elderly persons monitoring. Video-based systems have many limitations making them ineffective in many situations. Wi-Fi provides an easily accessible source of opportunity for people tracking that does not have the limitations of video-based systems. The system will detect, localise, and track people, based on the available Wi-Fi signals that are reflected from their bodies. Wi-Fi based systems still need to address some challenges in order to be able to operate in challenging environments. Some of these challenges include the detection of the weak signal, the detection of abrupt people motion, and the presence of multipath propagation. In this thesis, these three main challenges will be addressed. Firstly, a weak signal detection method that uses the changes in the signals that are reflected from static objects, to improve the detection probability of weak signals that are reflected from the person’s body. Then, a deep learning based Wi-Fi localisation technique is proposed that significantly improves the runtime and the accuracy in comparison with existing techniques. After that, a quantum mechanics inspired tracking method is proposed to address the abrupt motion problem. The proposed method uses some interesting phenomena in the quantum world, where the person is allowed to exist at multiple positions simultaneously. The results show a significant improvement in reducing the tracking error and in reducing the tracking delay

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Advances and Applications of Dezert-Smarandache Theory (DSmT) for Information Fusion (Collected Works), Vol. 4

    Get PDF
    The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.unm.edu/DSmT-book3.pdf) in international conferences, seminars, workshops and journals. First Part of this book presents the theoretical advancement of DSmT, dealing with Belief functions, conditioning and deconditioning, Analytic Hierarchy Process, Decision Making, Multi-Criteria, evidence theory, combination rule, evidence distance, conflicting belief, sources of evidences with different importance and reliabilities, importance of sources, pignistic probability transformation, Qualitative reasoning under uncertainty, Imprecise belief structures, 2-Tuple linguistic label, Electre Tri Method, hierarchical proportional redistribution, basic belief assignment, subjective probability measure, Smarandache codification, neutrosophic logic, Evidence theory, outranking methods, Dempster-Shafer Theory, Bayes fusion rule, frequentist probability, mean square error, controlling factor, optimal assignment solution, data association, Transferable Belief Model, and others. More applications of DSmT have emerged in the past years since the apparition of the third book of DSmT 2009. Subsequently, the second part of this volume is about applications of DSmT in correlation with Electronic Support Measures, belief function, sensor networks, Ground Moving Target and Multiple target tracking, Vehicle-Born Improvised Explosive Device, Belief Interacting Multiple Model filter, seismic and acoustic sensor, Support Vector Machines, Alarm classification, ability of human visual system, Uncertainty Representation and Reasoning Evaluation Framework, Threat Assessment, Handwritten Signature Verification, Automatic Aircraft Recognition, Dynamic Data-Driven Application System, adjustment of secure communication trust analysis, and so on. Finally, the third part presents a List of References related with DSmT published or presented along the years since its inception in 2004, chronologically ordered

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018
    corecore