64 research outputs found

    Enabling technologies for decentralized interpersonal communication

    Get PDF
    In the recent years the Internet users have witnessed the emergence of Peer-to-Peer (P2P) technologies and applications. One class of P2P applications is comprised of applications that are targeted for interpersonal communication. The communication applications that utilize P2P technologies are referred to as decentralized interpersonal communication applications. Such applications are decentralized in a sense that they do not require assistance from centralized servers for setting up multimedia sessions between users. The invention of Distributed Hash Table (DHT) algorithms has been an important, but not an inclusive enabler for decentralized interpersonal communication. Even though the DHTs provide a basic foundation for decentralization, there are still a number of challenges without viable technological solutions. The main contribution of this thesis is to propose technological solutions to a subset of the existing challenges. In addition, this thesis also presents the preliminary work for the technological solutions. There are two parts in the preliminary work. In the first part, a set of DHT algorithms are evaluated from the viewpoint of decentralized interpersonal communication, and the second part gives a coherent presentation of the challenges that a decentralized interpersonal communication application is going to encounter in mobile networks. The technological solution proposals contain two architectures and two algorithms. The first architecture enables an interconnection between a decentralized and a centralized communication network, and the second architecture enables the decentralization of a set of legacy applications. The first algorithm is a load balancing algorithm that enables good scalability, and the second algorithm is a search algorithm that enables arbitrary searches. The algorithms can be used, for example, in DHT-based networks. Even though this thesis has focused on the decentralized interpersonal communication, some of the proposed technological solutions also have general applicability outside the scope of decentralized interpersonal communication

    Prospects of peer-to-peer SIP for mobile operators

    Get PDF
    Tämän diplomityön tarkoituksena on esitellä kehitteillä oleva Peer-to-Peer Session Initiation Protocol (P2PSIP), jonka avulla käyttäjät voivat itsenäisesti ja helposti luoda keskenään puhe- ja muita multimediayhteyksiä vertaisverkko-tekniikan avulla. Lisäksi tarkoituksena on arvioida P2PSIP protokollan vaikutuksia ja mahdollisuuksia mobiilioperaattoreille, joille sitä voidaan pitää uhkana. Tästä huolimatta, P2PSIP:n ei ole kuitenkaan tarkoitus korvata nykyisiä puhelinverkkoja. Työn alussa esittelemme SIP:n ja vertaisverkkojen (Peer-to-Peer) periaatteet, joihin P2PSIP-protokollan on suunniteltu perustuvan. SIP mahdollistaa multimedia-istuntojen luomisen, sulkemisen ja muokkaamisen verkossa, mutta sen monipuolinen käyttö vaatii keskitettyjen palvelimien käyttöä. Vertaisverkon avulla käyttäjät voivat suorittaa keskitettyjen palvelimien tehtävät keskenään hajautetusti. Tällöin voidaan ylläpitää laajojakin verkkoja tehokkaasti ilman palvelimista aiheutuvia ylläpito-kustannuksia. Mobiilioperaattorit ovat haasteellisen tilanteen edessä, koska teleliikennemaailma on muuttumassa yhä avoimemmaksi. Tällöin operaattoreiden asiakkaille aukeaa mahdollisuuksia käyttää kilpailevia Internet-palveluja (kuten Skype) helpommin ja tulevaisuudessa myös itse muodostamaan kommunikointiverkkoja P2PSIP:n avulla. Tutkimukset osoittavat, että näistä uhista huolimatta myös operaattorit pystyvät näkemään P2PSIP:n mahdollisuutena mukautumisessa nopeasti muuttuvan teleliikennemaailman haasteisiin. Nämä mahdollisuudet sisältävät operaattorin oman verkon optimoinnin lisäksi vaihtoehtoisten ja monipuolisempien palveluiden tarjoamisen asiakkailleen edullisesti. Täytyy kuitenkin muistaa, että näiden mahdollisuuksien toteuttamisten vaikutusten ei tulisi olla ristiriidassa operaattorin muiden palveluiden kanssa. Lisäksi tulisi muistaa, että tällä hetkellä keskeneräisen P2PSIP-standardin lopullinen luonne ja ominaisuudet voivat muuttaa sen vaikutuksia.The purpose of this thesis is to present the Peer-to-Peer Session Initiation Protocol (P2PSIP) being developed. In addition, the purpose of this thesis is to evaluate the impacts and prospects of P2PSIP to mobile operators, to whom it can be regarded as a threat. In P2PSIP, users can independently and easily establish voice and other multimedia connections using peer-to-peer (P2P) networking. However, P2PSIP is not meant to replace the existing telephony networks of the operators. We start by introducing the principles of SIP and P2P networking that the P2PSIP is intended to use. SIP enables to establish, terminate and modify multimedia sessions, but its versatile exploitation requires using centralized servers. By using P2P networking, users can decentralize the functions of centralized servers by performing them among themselves. This enables to maintain large and robust networks without maintenance costs resulted of running such centralized servers. Telecommunications market is transforming to a more open environment, where mobile operators and other service providers are challenged to adapt to the upcoming changes. Subscribers have easier access to rivalling Internet-services (such as Skype) and in future they can form their own communication communities by using P2PSIP. The results show that despite of these threats, telecom operators can find potential from P2PSIP in concurrence in adaptation to the challenges of the rapidly changing telecom environment. These potential roles include optimization of the network of the operator, but as well roles to provide alternative and more versatile services to their subscribers at low cost. However, the usage of P2PSIP should not conflict with the other services of the operator. Also, as P2PSIP is still under development, its final nature and features may change its impacts and prospects

    Implementing a secured IMS-based Identity exchange

    Get PDF
    With the continuous development of telecommunications, networking and the ubiquitous computing the necessity of higher bandwidth and better quality of services is always one of the most important user requirements. In this background, IP Multimedia Subsystem (IMS) is becoming very important for the Next Generation Networking (NGN) and all-Internet Protocol (all-IP) infrastructure. This new tendency provides opportunities for new operators and service providers to enter the market and to be competitive. These developments will generate new challenges related to the user identity assurance. It will be more difficult to rely on the old paradigms of the static operator relationships guaranteeing end-to-end the identity of the users. In this case there is crucial need to find new mechanisms to provide to the end points assurance about the identity of their counterparts. In this work we implemented a solution that establishes a trust between two end points by taking advantage of IMS in a roaming scenario where the visited access network may not be entirely trustworthy. In essence, this means establishing an identity association so that the parties can have operator provided assurance regarding the used identities. This allows local trust decisions and does not rely on the existence of global Public Key Infrastructure (PKI). Concretely in this work we have modified the Session Initiation Protocol (SIP) “INVITE” messages by adding new SIP headers such as the identity and the signature of the SIP entities taking part in a multimedia conversation. Every SIP entity has to add its own identity and signature and also has to verify those of its counterparts in a typical SIP “INVITE” exchange. By this work we show that establishing this kind of identity association is feasible but some scalability issues have to be taken into account such as the time delay or the size of the new messages. In order to accomplish this master thesis work, we have used the Open Source IMS Core (OSIMS) platform developed by FOKUS, SailFin project as the Application Server (AS) and IMS Communicator as the IMS client. /Kir1

    An appraisal of secure, wireless grid-enabled data warehousing

    Get PDF
    In most research, appropriate collections of data play a significant role in aiding decision-making processes. This is more critical if the data is being accessed across organisational barriers. Further, for the data to be mined and analysed efficiently, to aid decision-making processes, it must be harnessed in a suitably-structured fashion. There is, for example, a need to perform diverse data analyses and interpretation of structured (non-personal) HIV/AIDS patient-data from various quarters in South Africa. Although this data does exist, to some extent, it is autonomously owned and stored in disparate data storages, and not readily available to all interested parties. In order to put this data to meaningful use, it is imperative to integrate and store this data in a manner in which it can be better utilized by all those involved in the ontological field. This implies integration of (and hence, interoperability), and appropriate accessibility to, the information systems of the autonomous organizations providing data and data-processing. This is a typical problem-scenario for a Virtual Inter-Organisational Information System (VIOIS), proposed in this study. The VIOIS envisaged is a hypothetical, secure, Wireless Grid-enabled Data Warehouse (WGDW) that enables IOIS interaction, such as the storage and processing of HIV/AIDS patient-data to be utilized for HIV/AIDS-specific research. The proposed WDGW offers a methodical approach for arriving at such a collaborative (HIV/AIDS research) integrated system. The proposed WDGW is virtual community that consists mainly of data-providers, service-providers and information-consumers. The WGDW-basis resulted from systematic literaturesurvey that covered a variety of technologies and standards that support datastorage, data-management, computation and connectivity between virtual community members in Grid computing contexts. A Grid computing paradigm is proposed for data-storage, data management and computation in the WGDW. Informational or analytical processing will be enabled through data warehousing while connectivity will be attained wirelessly (for addressing the paucity of connectivity infrastructure in rural parts of developing countries, like South Africa)

    An appraisal of secure, wireless grid-enabled data warehousing

    Get PDF
    In most research, appropriate collections of data play a significant role in aiding decision-making processes. This is more critical if the data is being accessed across organisational barriers. Further, for the data to be mined and analysed efficiently, to aid decision-making processes, it must be harnessed in a suitably-structured fashion. There is, for example, a need to perform diverse data analyses and interpretation of structured (non-personal) HIV/AIDS patient-data from various quarters in South Africa. Although this data does exist, to some extent, it is autonomously owned and stored in disparate data storages, and not readily available to all interested parties. In order to put this data to meaningful use, it is imperative to integrate and store this data in a manner in which it can be better utilized by all those involved in the ontological field. This implies integration of (and hence, interoperability), and appropriate accessibility to, the information systems of the autonomous organizations providing data and data-processing. This is a typical problem-scenario for a Virtual Inter-Organisational Information System (VIOIS), proposed in this study. The VIOIS envisaged is a hypothetical, secure, Wireless Grid-enabled Data Warehouse (WGDW) that enables IOIS interaction, such as the storage and processing of HIV/AIDS patient-data to be utilized for HIV/AIDS-specific research. The proposed WDGW offers a methodical approach for arriving at such a collaborative (HIV/AIDS research) integrated system. The proposed WDGW is virtual community that consists mainly of data-providers, service-providers and information-consumers. The WGDW-basis resulted from systematic literaturesurvey that covered a variety of technologies and standards that support datastorage, data-management, computation and connectivity between virtual community members in Grid computing contexts. A Grid computing paradigm is proposed for data-storage, data management and computation in the WGDW. Informational or analytical processing will be enabled through data warehousing while connectivity will be attained wirelessly (for addressing the paucity of connectivity infrastructure in rural parts of developing countries, like South Africa)

    Enabling technologies for decentralized interpersonal communication

    Get PDF
    In the recent years the Internet users have witnessed the emergence of Peer-to-Peer (P2P) technologies and applications. One class of P2P applications is comprised of applications that are targeted for interpersonal communication. The communication applications that utilize P2P technologies are referred to as decentralized interpersonal communication applications. Such applications are decentralized in a sense that they do not require assistance from centralized servers for setting up multimedia sessions between users. The invention of Distributed Hash Table (DHT) algorithms has been an important, but not an inclusive enabler for decentralized interpersonal communication. Even though the DHTs provide a basic foundation for decentralization, there are still a number of challenges without viable technological solutions. The main contribution of this thesis is to propose technological solutions to a subset of the existing challenges. In addition, this thesis also presents the preliminary work for the technological solutions. There are two parts in the preliminary work. In the first part, a set of DHT algorithms are evaluated from the viewpoint of decentralized interpersonal communication, and the second part gives a coherent presentation of the challenges that a decentralized interpersonal communication application is going to encounter in mobile networks. The technological solution proposals contain two architectures and two algorithms. The first architecture enables an interconnection between a decentralized and a centralized communication network, and the second architecture enables the decentralization of a set of legacy applications. The first algorithm is a load balancing algorithm that enables good scalability, and the second algorithm is a search algorithm that enables arbitrary searches. The algorithms can be used, for example, in DHT-based networks. Even though this thesis has focused on the decentralized interpersonal communication, some of the proposed technological solutions also have general applicability outside the scope of decentralized interpersonal communication

    Service composition based on SIP peer-to-peer networks

    Get PDF
    Today the telecommunication market is faced with the situation that customers are requesting for new telecommunication services, especially value added services. The concept of Next Generation Networks (NGN) seems to be a solution for this, so this concept finds its way into the telecommunication area. These customer expectations have emerged in the context of NGN and the associated migration of the telecommunication networks from traditional circuit-switched towards packet-switched networks. One fundamental aspect of the NGN concept is to outsource the intelligence of services from the switching plane onto separated Service Delivery Platforms using SIP (Session Initiation Protocol) to provide the required signalling functionality. Caused by this migration process towards NGN SIP has appeared as the major signalling protocol for IP (Internet Protocol) based NGN. This will lead in contrast to ISDN (Integrated Services Digital Network) and IN (Intelligent Network) to significantly lower dependences among the network and services and enables to implement new services much easier and faster. In addition, further concepts from the IT (Information Technology) namely SOA (Service-Oriented Architecture) have largely influenced the telecommunication sector forced by amalgamation of IT and telecommunications. The benefit of applying SOA in telecommunication services is the acceleration of service creation and delivery. Main features of the SOA are that services are reusable, discoverable combinable and independently accessible from any location. Integration of those features offers a broader flexibility and efficiency for varying demands on services. This thesis proposes a novel framework for service provisioning and composition in SIP-based peer-to-peer networks applying the principles of SOA. One key contribution of the framework is the approach to enable the provisioning and composition of services which is performed by applying SIP. Based on this, the framework provides a flexible and fast way to request the creation for composite services. Furthermore the framework enables to request and combine multimodal value-added services, which means that they are no longer limited regarding media types such as audio, video and text. The proposed framework has been validated by a prototype implementation

    Convergence architecture for home service communities

    Get PDF
    Nowadays, home networks have integrated day to day life through the classical internet access and deliver numerous services to end users. This home entrance is a real opportunity for operators to deploy services directly between homes. However, one major issue is the interconnection between Home Networks (HN) which requires suitable architectures and efficient authentication mechanisms. In this paper, two network architectures were proposed to interconnect HNs in order to support home service delivery and then compared with the IMS as reference architecture. The first architecture was based on a centralized SIP solution and used HTTP digest for authentication purpose; while the second proposition consisted in a distributed architecture based on pure P2P and Identity based cryptography. The study of these two solutions has been undergone through the simulation of a simple photo sharing scenario. As a result, the centralized SIP solution can be relevant for an average number of users and the easiest way to deploy new services. The decentralized solution (pure P2P) can be deployed for small service communities and may be compliant to larger system with improved algorithms

    Security Enhancements in Voice Over Ip Networks

    Get PDF
    Voice delivery over IP networks including VoIP (Voice over IP) and VoLTE (Voice over LTE) are emerging as the alternatives to the conventional public telephony networks. With the growing number of subscribers and the global integration of 4/5G by operations, VoIP/VoLTE as the only option for voice delivery becomes an attractive target to be abused and exploited by malicious attackers. This dissertation aims to address some of the security challenges in VoIP/VoLTE. When we examine the past events to identify trends and changes in attacking strategies, we find that spam calls, caller-ID spoofing, and DoS attacks are the most imminent threats to VoIP deployments. Compared to email spam, voice spam will be much more obnoxious and time consuming nuisance for human subscribers to filter out. Since the threat of voice spam could become as serious as email spam, we first focus on spam detection and propose a content-based approach to protect telephone subscribers\u27 voice mailboxes from voice spam. Caller-ID has long been used to enable the callee parties know who is calling, verify his identity for authentication and his physical location for emergency services. VoIP and other packet switched networks such as all-IP Long Term Evolution (LTE) network provide flexibility that helps subscribers to use arbitrary caller-ID. Moreover, interconnecting between IP telephony and other Circuit-Switched (CS) legacy telephone networks has also weakened the security of caller-ID systems. We observe that the determination of true identity of a calling device helps us in preventing many VoIP attacks, such as caller-ID spoofing, spamming and call flooding attacks. This motivates us to take a very different approach to the VoIP problems and attempt to answer a fundamental question: is it possible to know the type of a device a subscriber uses to originate a call? By exploiting the impreciseness of the codec sampling rate in the caller\u27s RTP streams, we propose a fuzzy rule-based system to remotely identify calling devices. Finally, we propose a caller-ID based public key infrastructure for VoIP and VoLTE that provides signature generation at the calling party side as well as signature verification at the callee party side. The proposed signature can be used as caller-ID trust to prevent caller-ID spoofing and unsolicited calls. Our approach is based on the identity-based cryptography, and it also leverages the Domain Name System (DNS) and proxy servers in the VoIP architecture, as well as the Home Subscriber Server (HSS) and Call Session Control Function (CSCF) in the IP Multimedia Subsystem (IMS) architecture. Using OPNET, we then develop a comprehensive simulation testbed for the evaluation of our proposed infrastructure. Our simulation results show that the average call setup delays induced by our infrastructure are hardly noticeable by telephony subscribers and the extra signaling overhead is negligible. Therefore, our proposed infrastructure can be adopted to widely verify caller-ID in telephony networks

    Registry composition in ambient networks

    Get PDF
    Ambient Networks (AN) is a new networking concept for beyond 3G. It is a product of the European Union's Sixth Framework Program (FP6). Network composition is a core concept of ANs. It allows dynamic, scalable and uniform cooperation between heterogeneous networks. ANs can host various registries. These registries may be of different types (e.g. centralized, distributed), store heterogeneous types of information (e.g. raw data vs. aggregated data), and rely on different interfaces to access the stored information (i.e. protocols or programming interfaces). When ANs compose, the hosted registries need to compose. Registry composition is a sub-process of network composition. It provides seamless and autonomous access to the content of all of the registries in the composed network. This thesis proposes a new architecture for registry composition in ANs. This overall architecture is made up of four components: interface interworking, data interworking, negotiation and signaling. Interface interworking enables dynamic intercommunication between registries with heterogeneous interfaces. Data interworking involves dynamically overcoming data heterogeneity (e.g. format and granularity). Interface and data interworking go beyond static interworking using gateways, as done today. The negotiation component allows the negotiation of the composition agreement. Signaling coordinates and regulates the negotiation and the execution of the composition agreement. Requirements are derived and related work is reviewed. We propose a new functional entity and a new procedure to orchestrate the composition process. We also propose a new architecture for interface interworking, based on a peer to peer overlay network. We have built a proof-of-concept prototype. The interface-interworking component is used as the basis of our new architecture to data interworking. This architecture reuses mechanisms and algorithms from the federated data base area. The thesis proposes as well a new architecture for on-line negotiation. The architecture includes a template for composition agreement proposals, and a negotiation protocol that was validated using SPIN. A new signaling framework is also proposed. It is based on the IETF Next Step in Signaling (NSIS) framework and was validated using OPNET. Most of these contributions are now part of the AN concept, as defined by the European Union's Sixth Framework Progra
    • …
    corecore