1,605 research outputs found

    Event-triggered distributed H∞ state estimation with packet dropouts through sensor networks

    Get PDF
    This study is concerned with the event-triggered distributed H∞ state estimation problem for a class of discrete-time stochastic non-linear systems with packet dropouts in a sensor network. An event-triggered communication mechanism is adopted over the sensor network with hope to reduce the communication burden and the energy consumption, where the measurements on each sensor are transmitted only when a certain triggering condition is violated. Furthermore, a novel distributed state estimator is designed where the available innovations are not only from the individual sensor, but also from its neighbouring ones according to the given topology. The purpose of the problem under consideration is to design a set of distributed state estimators such that the dynamics of estimation errors is exponentially mean-square stable and also the prespecified H∞ disturbance rejection attenuation level is guaranteed. By utilising the property of the Kronecker product and the stochastic analysis approaches, sufficient conditions are established under which the addressed state estimation problem is recast as a convex optimisation one that can be easily solved via available software packages. Finally, a simulation example is utilised to illustrate the usefulness of the proposed design scheme of event-triggered distributed state estimators.This work was supported in part by Royal Society of the UK, the National Natural Science Foundation of China under Grants 61329301, 61203139, 61473076, 61374127 and 61422301, the Shanghai Rising-Star Program of China under Grant 13QA1400100, the ShuGuang project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation under Grant 13SG34, the Fundamental Research Funds for the Central Universities, DHU Distinguished Young Professor Program, and the Alexander von Humboldt Foundation of Germany

    Event-based State Estimation: An Emulation-based Approach

    Full text link
    An event-based state estimation approach for reducing communication in a networked control system is proposed. Multiple distributed sensor agents observe a dynamic process and sporadically transmit their measurements to estimator agents over a shared bus network. Local event-triggering protocols ensure that data is transmitted only when necessary to meet a desired estimation accuracy. The event-based design is shown to emulate the performance of a centralised state observer design up to guaranteed bounds, but with reduced communication. The stability results for state estimation are extended to the distributed control system that results when the local estimates are used for feedback control. Results from numerical simulations and hardware experiments illustrate the effectiveness of the proposed approach in reducing network communication.Comment: 21 pages, 8 figures, this article is based on the technical report arXiv:1511.05223 and is accepted for publication in IET Control Theory & Application

    Value of Information in Feedback Control

    Full text link
    In this article, we investigate the impact of information on networked control systems, and illustrate how to quantify a fundamental property of stochastic processes that can enrich our understanding about such systems. To that end, we develop a theoretical framework for the joint design of an event trigger and a controller in optimal event-triggered control. We cover two distinct information patterns: perfect information and imperfect information. In both cases, observations are available at the event trigger instantly, but are transmitted to the controller sporadically with one-step delay. For each information pattern, we characterize the optimal triggering policy and optimal control policy such that the corresponding policy profile represents a Nash equilibrium. Accordingly, we quantify the value of information VoIk\operatorname{VoI}_k as the variation in the cost-to-go of the system given an observation at time kk. Finally, we provide an algorithm for approximation of the value of information, and synthesize a closed-form suboptimal triggering policy with a performance guarantee that can readily be implemented

    Distributed estimation over a low-cost sensor network: a review of state-of-the-art

    Get PDF
    Proliferation of low-cost, lightweight, and power efficient sensors and advances in networked systems enable the employment of multiple sensors. Distributed estimation provides a scalable and fault-robust fusion framework with a peer-to-peer communication architecture. For this reason, there seems to be a real need for a critical review of existing and, more importantly, recent advances in the domain of distributed estimation over a low-cost sensor network. This paper presents a comprehensive review of the state-of-the-art solutions in this research area, exploring their characteristics, advantages, and challenging issues. Additionally, several open problems and future avenues of research are highlighted

    Event-based multi-objective filtering for multi-rate time-varying systems with random sensor saturation

    Get PDF
    summary:This paper focuses on the multi-objective filtering of multirate time-varying systems with random sensor saturations, where both the variance-constrained index and the HH_\infty index are employed to evaluate the filtering performance. According to address issues, the high-frequency period of the internal state of the system is nondestructively converted to the low-frequency period, which determined by the measurement devices. Then the saturated output of multiple sensors is modeled as a sector bounded nonlinearity. At the same time, in order to reduce the communication frequency between sensors and filters, a communication scheduling rule is designed by the utilization of an event-triggered mechanism. By means of random analysis technology, the sufficient conditions are given to guarantee the preset HH_\infty performance and variance constraint performance indexes of the system, and then the solution of the desired filter is obtained by using linear matrix inequalities. Finally, the validity and effectiveness of the proposed filter scheme are verified by numerical simulation

    Fault estimation for time-varying systems with Round-Robin protocol

    Get PDF
    summary:This paper is concerned with the design problem of finite-horizon HH_\infty fault estimator for a class of nonlinear time-varying systems with Round-Robin protocol scheduling. The faults are assumed to occur in a random way governed by a Bernoulli distributed white sequence. The communication between the sensor nodes and fault estimators is implemented via a shared network. In order to prevent the data from collisions, a Round-Robin protocol is utilized to orchestrate the transmission of sensor nodes. By means of the stochastic analysis technique and the completing squares method, a necessary and sufficient condition is established for the existence of fault estimator ensuring that the estimation error dynamics satisfies the prescribed HH_\infty constraint. The time-varying parameters of fault estimator are obtained by recursively solving a set of coupled backward Riccati difference equations. A simulation example is given to demonstrate the effectiveness of the proposed design scheme of the fault estimator
    corecore