1,358 research outputs found

    Visibility maintenance via controlled invariance for leader-follower Dubins-like vehicles

    Full text link
    The paper studies the visibility maintenance problem (VMP) for a leader-follower pair of Dubins-like vehicles with input constraints, and proposes an original solution based on the notion of controlled invariance. The nonlinear model describing the relative dynamics of the vehicles is interpreted as linear uncertain system, with the leader robot acting as an external disturbance. The VMP is then reformulated as a linear constrained regulation problem with additive disturbances (DLCRP). Positive D-invariance conditions for linear uncertain systems with parametric disturbance matrix are introduced and used to solve the VMP when box bounds on the state, control input and disturbance are considered. The proposed design procedure is shown to be easily adaptable to more general working scenarios. Extensive simulation results are provided to illustrate the theory and show the effectiveness of our approachComment: 17 pages, 24 figures, extended version of the journal paper of the authors submitted to Automatic

    Bounded Distributed Flocking Control of Nonholonomic Mobile Robots

    Full text link
    There have been numerous studies on the problem of flocking control for multiagent systems whose simplified models are presented in terms of point-mass elements. Meanwhile, full dynamic models pose some challenging problems in addressing the flocking control problem of mobile robots due to their nonholonomic dynamic properties. Taking practical constraints into consideration, we propose a novel approach to distributed flocking control of nonholonomic mobile robots by bounded feedback. The flocking control objectives consist of velocity consensus, collision avoidance, and cohesion maintenance among mobile robots. A flocking control protocol which is based on the information of neighbor mobile robots is constructed. The theoretical analysis is conducted with the help of a Lyapunov-like function and graph theory. Simulation results are shown to demonstrate the efficacy of the proposed distributed flocking control scheme

    Consensus Control for a Class of Linear Multiagent Systems using a Distributed Integral Sliding Mode Strategy

    Get PDF
    In this paper, a consensus framework is proposed for a class of linear multiagent systems subject to matched and unmatched uncertainties in an undirected topology. A linear coordinate transformation is derived so that the consensus protocol design can be conveniently performed. The distributed consensus protocol is developed by using an integral sliding mode strategy. Consensus is achieved asymptotically and all subsystem states are bounded. By using an integral sliding mode control, the subsystems lie on the sliding surface from the initial time, which avoids any sensitivity to uncertainties during the reaching phase. By use of an appropriate projection matrix, the size of the equivalent control required to maintain sliding is reduced which reduces the conservatism of the design. MATLAB simulations validate the effectiveness and superiority of the proposed method
    • …
    corecore