2,029 research outputs found

    Data analytics for stochastic control and prognostics in cyber-physical systems

    Get PDF
    In this dissertation, several novel cyber fault diagnosis and prognosis and defense methodologies for cyber-physical systems have been proposed. First, a novel routing scheme for wireless mesh network is proposed. An effective capacity estimation for P2P and E2E path is designed to guarantee the vital transmission safety. This scheme can ensure a high quality of service (QoS) under imperfect network condition, even cyber attacks. Then, the imperfection, uncertainties, and dynamics in the cyberspace are considered both in system model and controller design. A PDF identifier is proposed to capture the time-varying delays and its distribution. With the modification of traditional stochastic optimal control using PDF of delays, the assumption of full knowledge of network imperfection in priori is relaxed. This proposed controller is considered a novel resilience control strategy for cyber fault diagnosis and prognosis. After that, we turn to the development of a general framework for cyber fault diagnosis and prognosis schemes for CPSs wherein the cyberspace performance affect the physical system and vice versa. A novel cyber fault diagnosis scheme is proposed. It is capable of detecting cyber fault by monitoring the probability of delays. Also, the isolation of cyber and physical system fault is achieved with cooperating with the traditional observer based physical system fault detection. Next, a novel cyber fault prognosis scheme, which can detect and estimate cyber fault and its negative effects on system performance ahead of time, is proposed. Moreover, soft and hard cyber faults are isolated depending on whether potential threats on system stability is predicted. Finally, one-class SVM is employed to classify healthy and erroneous delays. Then, another cyber fault prognosis based on OCSVM is proposed --Abstract, page iv

    Energy efficient wireless sensor network protocols for monitoring and prognostics of large scale systems

    Get PDF
    In this work, energy-efficient protocols for wireless sensor networks (WSN) with applications to prognostics are investigated. Both analytical methods and verification are shown for the proposed methods via either hardware experiments or simulation. This work is presented in five papers. Energy-efficiency methods for WSN include distributed algorithms for i) optimal routing, ii) adaptive scheduling, iii) adaptive transmission power and data-rate control --Abstract, page iv

    Robust predictability in discrete event systems under sensor attacks

    Get PDF
    The problem of robust predictability against sensor attacks is investigated. The objective of a diagnoser is to predict the occurrence of a critical event of a discrete event system (DES) under partial observation. An attacker may rewrite the diagnoser observation by inserting fake events or erasing real events. Two novel structures, namely, real diagnoser and the fake diagnoser, are constructed based on the diagnoser of the system. We compute the hybrid diagnoser as the parallel composition of the real diagnoser and the fake diagnoser. The hybrid diagnoser can be used to verify if a critical event of the system is robustly predictable when an attacker tampers with the diagnoser observation

    Quantitatively-Optimal Communication Protocols for Decentralized Supervisory Control of Discrete-Event Systems

    Get PDF
    In this thesis, decentralized supervisory control problems which cannot be solved without some communication among the controllers are studied. Recent work has focused on finding minimal communication sets (events or state information) required to satisfy the specifications. A quantitative analysis for the decentralized supervisory control and communication problem is pursued through which an optimal communication strategy is obtained. Finding an optimal strategy for a controller in the decentralized control setting is challenging because the best strategy depends on the choices of other controllers, all of whom are also trying to optimize their own strategies. A locally-optimal strategy is one that minimizes the cost of the communication protocol for each controller. Two important solution concepts in game theory, namely Nash equilibrium and Pareto optimality, are used to analyze optimal interactions in multi-agent systems. These concepts are adapted for the decentralized supervisory control and communication problem. A communication protocol may help to realize the exact control solution in decentralized supervisory control problem; however, the cost may be high. In certain circumstances, it can be advantageous, from a cost perspective, to reduce communication, but incur a penalty for synthesizing an approximate control solution. An exploration of the trade-off between the cost and accuracy of a decentralized discrete-event control solution with synchronously communicating controllers in a multi-objective optimization problem is presented. A widely-used evolutionary algorithm (NSGA-II) is adapted to examine the set of Pareto-optimal solutions that arise for this family of decentralized discrete-event systems (DES). The decentralized control problem is synthesized first by considering synchronous communication among the controllers. In practice, there are non-negligible delays in communication channels which lead to undesirable effects on controller decisions. Recent work on modeling communication delay between controllers only considers the case when all observations are communicated. When this condition is relaxed, it may still be possible to formulate communicating decentralized controllers that can solve the control problem with reduced communications. Instead of synthesizing reduced communication protocols under bounded delay, a procedure is developed for testing protocols designed for synchronous communications (where not all observations are communicated) for their robustness under conditions when only an upper bound for channel delay is known. Finally a decentralized discrete-event control problem is defined in timed DES (TDES) with known upper-bound for communication delay. It is shown that the TDES control problem with bounded delay communication can be converted to an equivalent problem with no delay in communication. The latter problem can be solved using the algorithms proposed for untimed DES with synchronous communication
    • …
    corecore