42,801 research outputs found

    Partitioner Selection with EASE to Optimize Distributed Graph Processing

    Full text link
    For distributed graph processing on massive graphs, a graph is partitioned into multiple equally-sized parts which are distributed among machines in a compute cluster. In the last decade, many partitioning algorithms have been developed which differ from each other with respect to the partitioning quality, the run-time of the partitioning and the type of graph for which they work best. The plethora of graph partitioning algorithms makes it a challenging task to select a partitioner for a given scenario. Different studies exist that provide qualitative insights into the characteristics of graph partitioning algorithms that support a selection. However, in order to enable automatic selection, a quantitative prediction of the partitioning quality, the partitioning run-time and the run-time of subsequent graph processing jobs is needed. In this paper, we propose a machine learning-based approach to provide such a quantitative prediction for different types of edge partitioning algorithms and graph processing workloads. We show that training based on generated graphs achieves high accuracy, which can be further improved when using real-world data. Based on the predictions, the automatic selection reduces the end-to-end run-time on average by 11.1% compared to a random selection, by 17.4% compared to selecting the partitioner that yields the lowest cut size, and by 29.1% compared to the worst strategy, respectively. Furthermore, in 35.7% of the cases, the best strategy was selected.Comment: To appear at IEEE International Conference on Data Engineering (ICDE 2023

    Computational Optimization Techniques for Graph Partitioning

    Get PDF
    Partitioning graphs into two or more subgraphs is a fundamental operation in computer science, with applications in large-scale graph analytics, distributed and parallel data processing, and fill-reducing orderings in sparse matrix algorithms. Computing balanced and minimally connected subgraphs is a common pre-processing step in these areas, and must therefore be done quickly and efficiently. Since graph partitioning is NP-hard, heuristics must be used. These heuristics must balance the need to produce high quality partitions with that of providing practical performance. Traditional methods of partitioning graphs rely heavily on combinatorics, but recent developments in continuous optimization formulations have led to the development of hybrid methods that combine the best of both approaches. This work describes numerical optimization formulations for two classes of graph partitioning problems, edge cuts and vertex separators. Optimization-based formulations for each of these problems are described, and hybrid algorithms combining these optimization-based approaches with traditional combinatoric methods are presented. Efficient implementations and computational results for these algorithms are presented in a C++ graph partitioning library competitive with the state of the art. Additionally, an optimization-based approach to hypergraph partitioning is proposed

    VEBO: A Vertex- and Edge-balanced Ordering Heuristic to Load Balance Parallel Graph Processing

    Get PDF
    Graph partitioning drives graph processing in distributed, disk-based and NUMA-aware systems. A commonly used partitioning goal is to balance the number of edges per partition in conjunction with minimizing the edge or vertex cut. While this type of partitioning is computationally expensive, we observe that such topology-driven partitioning nonetheless results in computational load imbalance. We propose Vertex- and Edge-Balanced Ordering (VEBO): balance the number of edges and the number of unique destinations of those edges. VEBO optimally balances edges and vertices for graphs with a power-law degree distribution. Experimental evaluation on three shared-memory graph processing systems (Ligra, Polymer and GraphGrind) shows that VEBO achieves excellent load balance and improves performance by 1.09x over Ligra, 1.41x over Polymer and 1.65x over GraphGrind, compared to their respective partitioning algorithms, averaged across 8 algorithms and 7 graphs.Comment: 13 page

    Computational Optimization Techniques for Graph Partitioning

    Get PDF
    Partitioning graphs into two or more subgraphs is a fundamental operation in computer science, with applications in large-scale graph analytics, distributed and parallel data processing, and fill-reducing orderings in sparse matrix algorithms. Computing balanced and minimally connected subgraphs is a common pre-processing step in these areas, and must therefore be done quickly and efficiently. Since graph partitioning is NP-hard, heuristics must be used. These heuristics must balance the need to produce high quality partitions with that of providing practical performance. Traditional methods of partitioning graphs rely heavily on combinatorics, but recent developments in continuous optimization formulations have led to the development of hybrid methods that combine the best of both approaches. This work describes numerical optimization formulations for two classes of graph partitioning problems, edge cuts and vertex separators. Optimization-based formulations for each of these problems are described, and hybrid algorithms combining these optimization-based approaches with traditional combinatoric methods are presented. Efficient implementations and computational results for these algorithms are presented in a C++ graph partitioning library competitive with the state of the art. Additionally, an optimization-based approach to hypergraph partitioning is proposed

    Window-based Streaming Graph Partitioning Algorithm

    Full text link
    In the recent years, the scale of graph datasets has increased to such a degree that a single machine is not capable of efficiently processing large graphs. Thereby, efficient graph partitioning is necessary for those large graph applications. Traditional graph partitioning generally loads the whole graph data into the memory before performing partitioning; this is not only a time consuming task but it also creates memory bottlenecks. These issues of memory limitation and enormous time complexity can be resolved using stream-based graph partitioning. A streaming graph partitioning algorithm reads vertices once and assigns that vertex to a partition accordingly. This is also called an one-pass algorithm. This paper proposes an efficient window-based streaming graph partitioning algorithm called WStream. The WStream algorithm is an edge-cut partitioning algorithm, which distributes a vertex among the partitions. Our results suggest that the WStream algorithm is able to partition large graph data efficiently while keeping the load balanced across different partitions, and communication to a minimum. Evaluation results with real workloads also prove the effectiveness of our proposed algorithm, and it achieves a significant reduction in load imbalance and edge-cut with different ranges of dataset
    • …
    corecore