1,627 research outputs found

    Distributed Edge Connectivity in Sublinear Time

    Full text link
    We present the first sublinear-time algorithm for a distributed message-passing network sto compute its edge connectivity λ\lambda exactly in the CONGEST model, as long as there are no parallel edges. Our algorithm takes O~(n11/353D1/353+n11/706)\tilde O(n^{1-1/353}D^{1/353}+n^{1-1/706}) time to compute λ\lambda and a cut of cardinality λ\lambda with high probability, where nn and DD are the number of nodes and the diameter of the network, respectively, and O~\tilde O hides polylogarithmic factors. This running time is sublinear in nn (i.e. O~(n1ϵ)\tilde O(n^{1-\epsilon})) whenever DD is. Previous sublinear-time distributed algorithms can solve this problem either (i) exactly only when λ=O(n1/8ϵ)\lambda=O(n^{1/8-\epsilon}) [Thurimella PODC'95; Pritchard, Thurimella, ACM Trans. Algorithms'11; Nanongkai, Su, DISC'14] or (ii) approximately [Ghaffari, Kuhn, DISC'13; Nanongkai, Su, DISC'14]. To achieve this we develop and combine several new techniques. First, we design the first distributed algorithm that can compute a kk-edge connectivity certificate for any k=O(n1ϵ)k=O(n^{1-\epsilon}) in time O~(nk+D)\tilde O(\sqrt{nk}+D). Second, we show that by combining the recent distributed expander decomposition technique of [Chang, Pettie, Zhang, SODA'19] with techniques from the sequential deterministic edge connectivity algorithm of [Kawarabayashi, Thorup, STOC'15], we can decompose the network into a sublinear number of clusters with small average diameter and without any mincut separating a cluster (except the `trivial' ones). Finally, by extending the tree packing technique from [Karger STOC'96], we can find the minimum cut in time proportional to the number of components. As a byproduct of this technique, we obtain an O~(n)\tilde O(n)-time algorithm for computing exact minimum cut for weighted graphs.Comment: Accepted at 51st ACM Symposium on Theory of Computing (STOC 2019

    Dynamic Graph Stream Algorithms in o(n)o(n) Space

    Get PDF
    In this paper we study graph problems in dynamic streaming model, where the input is defined by a sequence of edge insertions and deletions. As many natural problems require Ω(n)\Omega(n) space, where nn is the number of vertices, existing works mainly focused on designing O~(n)\tilde{O}(n) space algorithms. Although sublinear in the number of edges for dense graphs, it could still be too large for many applications (e.g. nn is huge or the graph is sparse). In this work, we give single-pass algorithms beating this space barrier for two classes of problems. We present o(n)o(n) space algorithms for estimating the number of connected components with additive error εn\varepsilon n and (1+ε)(1+\varepsilon)-approximating the weight of minimum spanning tree, for any small constant ε>0\varepsilon>0. The latter improves previous O~(n)\tilde{O}(n) space algorithm given by Ahn et al. (SODA 2012) for connected graphs with bounded edge weights. We initiate the study of approximate graph property testing in the dynamic streaming model, where we want to distinguish graphs satisfying the property from graphs that are ε\varepsilon-far from having the property. We consider the problem of testing kk-edge connectivity, kk-vertex connectivity, cycle-freeness and bipartiteness (of planar graphs), for which, we provide algorithms using roughly O~(n1ε)\tilde{O}(n^{1-\varepsilon}) space, which is o(n)o(n) for any constant ε\varepsilon. To complement our algorithms, we present Ω(n1O(ε))\Omega(n^{1-O(\varepsilon)}) space lower bounds for these problems, which show that such a dependence on ε\varepsilon is necessary.Comment: ICALP 201

    Implicit Decomposition for Write-Efficient Connectivity Algorithms

    Full text link
    The future of main memory appears to lie in the direction of new technologies that provide strong capacity-to-performance ratios, but have write operations that are much more expensive than reads in terms of latency, bandwidth, and energy. Motivated by this trend, we propose sequential and parallel algorithms to solve graph connectivity problems using significantly fewer writes than conventional algorithms. Our primary algorithmic tool is the construction of an o(n)o(n)-sized "implicit decomposition" of a bounded-degree graph GG on nn nodes, which combined with read-only access to GG enables fast answers to connectivity and biconnectivity queries on GG. The construction breaks the linear-write "barrier", resulting in costs that are asymptotically lower than conventional algorithms while adding only a modest cost to querying time. For general non-sparse graphs on mm edges, we also provide the first o(m)o(m) writes and O(m)O(m) operations parallel algorithms for connectivity and biconnectivity. These algorithms provide insight into how applications can efficiently process computations on large graphs in systems with read-write asymmetry

    Almost-Tight Distributed Minimum Cut Algorithms

    Full text link
    We study the problem of computing the minimum cut in a weighted distributed message-passing networks (the CONGEST model). Let λ\lambda be the minimum cut, nn be the number of nodes in the network, and DD be the network diameter. Our algorithm can compute λ\lambda exactly in O((nlogn+D)λ4log2n)O((\sqrt{n} \log^{*} n+D)\lambda^4 \log^2 n) time. To the best of our knowledge, this is the first paper that explicitly studies computing the exact minimum cut in the distributed setting. Previously, non-trivial sublinear time algorithms for this problem are known only for unweighted graphs when λ3\lambda\leq 3 due to Pritchard and Thurimella's O(D)O(D)-time and O(D+n1/2logn)O(D+n^{1/2}\log^* n)-time algorithms for computing 22-edge-connected and 33-edge-connected components. By using the edge sampling technique of Karger's, we can convert this algorithm into a (1+ϵ)(1+\epsilon)-approximation O((nlogn+D)ϵ5log3n)O((\sqrt{n}\log^{*} n+D)\epsilon^{-5}\log^3 n)-time algorithm for any ϵ>0\epsilon>0. This improves over the previous (2+ϵ)(2+\epsilon)-approximation O((nlogn+D)ϵ5log2nloglogn)O((\sqrt{n}\log^{*} n+D)\epsilon^{-5}\log^2 n\log\log n)-time algorithm and O(ϵ1)O(\epsilon^{-1})-approximation O(D+n12+ϵpolylogn)O(D+n^{\frac{1}{2}+\epsilon} \mathrm{poly}\log n)-time algorithm of Ghaffari and Kuhn. Due to the lower bound of Ω(D+n1/2/logn)\Omega(D+n^{1/2}/\log n) by Das Sarma et al. which holds for any approximation algorithm, this running time is tight up to a polylogn \mathrm{poly}\log n factor. To get the stated running time, we developed an approximation algorithm which combines the ideas of Thorup's algorithm and Matula's contraction algorithm. It saves an ϵ9log7n\epsilon^{-9}\log^{7} n factor as compared to applying Thorup's tree packing theorem directly. Then, we combine Kutten and Peleg's tree partitioning algorithm and Karger's dynamic programming to achieve an efficient distributed algorithm that finds the minimum cut when we are given a spanning tree that crosses the minimum cut exactly once

    Massively Parallel Algorithms for Distance Approximation and Spanners

    Full text link
    Over the past decade, there has been increasing interest in distributed/parallel algorithms for processing large-scale graphs. By now, we have quite fast algorithms -- usually sublogarithmic-time and often poly(loglogn)poly(\log\log n)-time, or even faster -- for a number of fundamental graph problems in the massively parallel computation (MPC) model. This model is a widely-adopted theoretical abstraction of MapReduce style settings, where a number of machines communicate in an all-to-all manner to process large-scale data. Contributing to this line of work on MPC graph algorithms, we present poly(logk)poly(loglogn)poly(\log k) \in poly(\log\log n) round MPC algorithms for computing O(k1+o(1))O(k^{1+{o(1)}})-spanners in the strongly sublinear regime of local memory. To the best of our knowledge, these are the first sublogarithmic-time MPC algorithms for spanner construction. As primary applications of our spanners, we get two important implications, as follows: -For the MPC setting, we get an O(log2logn)O(\log^2\log n)-round algorithm for O(log1+o(1)n)O(\log^{1+o(1)} n) approximation of all pairs shortest paths (APSP) in the near-linear regime of local memory. To the best of our knowledge, this is the first sublogarithmic-time MPC algorithm for distance approximations. -Our result above also extends to the Congested Clique model of distributed computing, with the same round complexity and approximation guarantee. This gives the first sub-logarithmic algorithm for approximating APSP in weighted graphs in the Congested Clique model

    Sublinear-Time Distributed Algorithms for Detecting Small Cliques and Even Cycles

    Get PDF
    In this paper we give sublinear-time distributed algorithms in the CONGEST model for subgraph detection for two classes of graphs: cliques and even-length cycles. We show for the first time that all copies of 4-cliques and 5-cliques in the network graph can be listed in sublinear time, O(n^{5/6+o(1)}) rounds and O(n^{21/22+o(1)}) rounds, respectively. Prior to our work, it was not known whether it was possible to even check if the network contains a 4-clique or a 5-clique in sublinear time. For even-length cycles, C_{2k}, we give an improved sublinear-time algorithm, which exploits a new connection to extremal combinatorics. For example, for 6-cycles we improve the running time from O~(n^{5/6}) to O~(n^{3/4}) rounds. We also show two obstacles on proving lower bounds for C_{2k}-freeness: First, we use the new connection to extremal combinatorics to show that the current lower bound of Omega~(sqrt{n}) rounds for 6-cycle freeness cannot be improved using partition-based reductions from 2-party communication complexity, the technique by which all known lower bounds on subgraph detection have been proven to date. Second, we show that there is some fixed constant delta in (0,1/2) such that for any k, a Omega(n^{1/2+delta}) lower bound on C_{2k}-freeness implies new lower bounds in circuit complexity. For general subgraphs, it was shown in [Orr Fischer et al., 2018] that for any fixed k, there exists a subgraph H of size k such that H-freeness requires Omega~(n^{2-Theta(1/k)}) rounds. It was left as an open problem whether this is tight, or whether some constant-sized subgraph requires truly quadratic time to detect. We show that in fact, for any subgraph H of constant size k, the H-freeness problem can be solved in O(n^{2 - Theta(1/k)}) rounds, nearly matching the lower bound of [Orr Fischer et al., 2018]
    corecore