413 research outputs found

    Spectrum Trading: An Abstracted Bibliography

    Full text link
    This document contains a bibliographic list of major papers on spectrum trading and their abstracts. The aim of the list is to offer researchers entering this field a fast panorama of the current literature. The list is continually updated on the webpage \url{http://www.disp.uniroma2.it/users/naldi/Ricspt.html}. Omissions and papers suggested for inclusion may be pointed out to the authors through e-mail (\textit{[email protected]})

    Collaborative Information Processing in Wireless Sensor Networks for Diffusive Source Estimation

    Get PDF
    In this dissertation, we address the issue of collaborative information processing for diffusive source parameter estimation using wireless sensor networks (WSNs) capable of sensing in dispersive medium/environment, from signal processing perspective. We begin the dissertation by focusing on the mathematical formulation of a special diffusion phenomenon, i.e., an underwater oil spill, along with statistical algorithms for meaningful analysis of sensor data leading to efficient estimation of desired parameters of interest. The objective is to obtain an analytical solution to the problem, rather than using non-model based sophisticated numerical techniques. We tried to make the physical diffusion model as much appropriate as possible, while maintaining some pragmatic and reasonable assumptions for the simplicity of exposition and analytical derivation. The dissertation studies both source localization and tracking for static and moving diffusive sources respectively. For static diffusive source localization, we investigate two parametric estimation techniques based on the maximum-likelihood (ML) and the best linear unbiased estimator (BLUE) for a special case of our obtained physical dispersion model. We prove the consistency and asymptotic normality of the obtained ML solution when the number of sensor nodes and samples approach infinity, and derive the Cramer-Rao lower bound (CRLB) on its performance. In case of a moving diffusive source, we propose a particle filter (PF) based target tracking scheme for moving diffusive source, and analytically derive the posterior Cramer-Rao lower bound (PCRLB) for the moving source state estimates as a theoretical performance bound. Further, we explore nonparametric, machine learning based estimation technique for diffusive source parameter estimation using Dirichlet process mixture model (DPMM). Since real data are often complicated, no parametric model is suitable. As an alternative, we exploit the rich tools of nonparametric Bayesian methods, in particular the DPMM, which provides us with a flexible and data-driven estimation process. We propose DPMM based static diffusive source localization algorithm and provide analytical proof of convergence. The proposed algorithm is also extended to the scenario when multiple diffusive sources of same kind are present in the diffusive field of interest. Efficient power allocation can play an important role in extending the lifetime of a resource constrained WSN. Resource-constrained WSNs rely on collaborative signal and information processing for efficient handling of large volumes of data collected by the sensor nodes. In this dissertation, the problem of collaborative information processing for sequential parameter estimation in a WSN is formulated in a cooperative game-theoretic framework, which addresses the issue of fair resource allocation for estimation task at the Fusion center (FC). The framework allows addressing either resource allocation or commitment for information processing as solutions of cooperative games with underlying theoretical justifications. Different solution concepts found in cooperative games, namely, the Shapley function and Nash bargaining are used to enforce certain kinds of fairness among the nodes in a WSN

    Dynamic Spectrum Leasing for Bi-Directional Communication: Impact of Selfishness

    Get PDF
    In this paper, we propose a beamforming-based dynamic spectrum leasing (DSL) technique to improve the spectral utility of bi-directional communication of the legacy/primary spectrum users through the help of colocated secondary users. The secondary users help for a time interval to relay the data between two primary terminals using physical layer network coding and beamforming to attain bi-directional communication with high spectral utility. As a reimbursement, the secondary users, cognitive radios (CRs) in our case, get exclusive access to the primary spectrum for a certain duration. We use Nash bargaining to determine the optimal division of temporal resources between relaying and reimbursement. Moreover, we consider that a fraction of secondary nodes can act selfishly by not helping the primary, yet enjoy the reimbursement time. We measure the utility of the DSL scheme in terms of a metric called time-bandwidth product (TBP) ratio quantifying the number of bits transmitted in direct communication versus DSL. We show that if all secondary nodes act honestly, more than 17-fold increase in the TBP ratio is observed for a sparse CR network. However, in such a network, selfish behavior of CR nodes can reduce the gain by more than a factor of 2

    Dynamic Flow-Adaptive Spectrum Leasing with Channel Aggregation in Cognitive Radio Networks

    Get PDF
    Cognitive radio networks (CRNs), which allow secondary users (SUs) to dynamically access a network without affecting the primary users (PUs), have been widely regarded as an effective approach to mitigate the shortage of spectrum resources and the inefficiency of spectrum utilization. However, the SUs suffer from frequent spectrum handoffs and transmission limitations. In this paper, considering the quality of service (QoS) requirements of PUs and SUs, we propose a novel dynamic flow-adaptive spectrum leasing with channel aggregation. Specifically, we design an adaptive leasing algorithm, which adaptively adjusts the portion of leased channels based on the number of ongoing and buffered PU flows. Furthermore, in the leased spectrum band, the SU flows with access priority employ dynamic spectrum access of channel aggregation, which enables one flow to occupy multiple channels for transmission in a dynamically changing environment. For performance evaluation, the continuous time Markov chain (CTMC) is developed to model our proposed strategy and conduct theoretical analyses. Numerical results demonstrate that the proposed strategy effectively improves the spectrum utilization and network capacity, while significantly reducing the forced termination probability and blocking probability of SU flows.publishedVersio

    Analysis of dynamic spectrum leasing for coded Bi-directional communication

    Get PDF
    In this paper, we aim to present a cooperative relaying based two way wireless communication scheme which can provide both spectral and energy efficiency in future wireless networks. To this end, we propose a novel network coding based Dynamic Spectrum Leasing (DSL) technique in which the cognitive secondary users cooperatively relay the primary data for two-way primary communication. In exchange for the relaying services, the primary grants exclusive access to the secondary users for their own activity. We model the random geometry of the ad hoc secondary users using a Poisson point process. We devise a game theoretic framework for the division of leasing time between the primary cooperation and secondary activity phases. We demonstrate that under these considerations and employing network coding, DSL can improve the number of bits that are successfully transmitted by 54% as compared to un-coded direct two way primary communication. Also the energy costs of the proposed DSL scheme are more than 10 times lower. Employing DSL also enables the cognitive users to get reasonable time for their own transmission after increasing the primary spectral and energy efficiency

    Channel Access and Reliability Performance in Cognitive Radio Networks:Modeling and Performance Analysis

    Get PDF
    Doktorgradsavhandling ved Institutt for Informasjons- og kommunikasjonsteknologi, Universitetet i AgderAccording to the facts and figures published by the international telecommunication union (ITU) regarding information and communication technology (ICT) industry, it is estimated that over 3.2 billion people have access to the Internet in 2015 [1]. Since 2000, this number has been octupled. Meanwhile, by the end of 2015, there were more than 7 billion mobile cellular subscriptions in the world, corresponding to a penetration rate of 97%. As the most dynamic segment in ICT, mobile communication is providing Internet services and consequently the mobile broadband penetration rate has reached 47% globally. Accordingly, capacity, throughput, reliability, service quality and resource availability of wireless services become essential factors for future mobile and wireless communications. Essentially, all these wireless technologies, standards, services and allocation policies rely on one common natural resource, i.e., radio spectrum. Radio spectrum spans over the electromagnetic frequencies between 3 kHz and 300 GHz. Existing radio spectrum access techniques are based on the fixed allocation of radio resources. These methods with fixed assigned bandwidth for exclusive usage of licensed users are often not efficient since most of the spectrum bands are under-utilized, either/both in the space domain or/and in the time domain. In reality, it is observed that many spectrum bands are largely un-occupied in many places [2], [3]. For instance, the spectrum bands which are exclusively allocated for TV broadcasting services in USA remain un-occupied from midnight to early morning according to the real-life measurement performed in [4]. In addition to the wastage of radio resources, spectrum under-utilization constraints spectrum availability for other intended users. Furthermore, legacy fixed spectrum allocation techniques are not capable of adapting to the changes and interactions in the system, leading to degraded network performance. Unlike in the static spectrum allocation, a fraction of the radio spectrum is allocated for open access as license-free bands, e.g., the industrial, scientific and medical (ISM) bands (902-928, 2400-2483.5, 5725-5850 MHz). In 1985, the federal communications commission (FCC) permitted to use the ISM bands for private and unlicensed occupancy, however, under certain restrictions on transmission power [5]. Consequently, standards like IEEE 802.11 for wireless local area networks (WLANs) and IEEE 802.15 for wireless personal area networks (WPAN) have grown rapidly with open access spectrum policies in the 2.4 GHz and 5 GHz ISM bands. With the co-existence of both similar and dissimilar radio technologies, 802.11 networks face challenges for providing satisfactory quality of service (QoS). This and the above mentioned spectrum under-utilization issues motivate the spectrum regulatory bodies to rethink about more flexible spectrum access for licenseexempt users or more efficient radio spectrum management. Cognitive radio (CR) is probably the most promising technology for achieving efficient spectrum utilization in future wireless networks

    A survey on MAC protocols for complex self-organizing cognitive radio networks

    Get PDF
    Complex self-organizing cognitive radio (CR) networks serve as a framework for accessing the spectrum allocation dynamically where the vacant channels can be used by CR nodes opportunistically. CR devices must be capable of exploiting spectrum opportunities and exchanging control information over a control channel. Moreover, CR nodes should intelligently coordinate their access between different cognitive radios to avoid collisions on the available spectrum channels and to vacate the channel for the licensed user in timely manner. Since inception of CR technology, several MAC protocols have been designed and developed. This paper surveys the state of the art on tools, technologies and taxonomy of complex self-organizing CR networks. A detailed analysis on CR MAC protocols form part of this paper. We group existing approaches for development of CR MAC protocols and classify them into different categories and provide performance analysis and comparison of different protocols. With our categorization, an easy and concise view of underlying models for development of a CR MAC protocol is provided

    Price-Based Resource Allocation for Spectrum-Sharing Femtocell Networks: A Stackelberg Game Approach

    Full text link
    This paper investigates the price-based resource allocation strategies for the uplink transmission of a spectrum-sharing femtocell network, in which a central macrocell is underlaid with distributed femtocells, all operating over the same frequency band as the macrocell. Assuming that the macrocell base station (MBS) protects itself by pricing the interference from the femtocell users, a Stackelberg game is formulated to study the joint utility maximization of the macrocell and the femtocells subject to a maximum tolerable interference power constraint at the MBS. Especially, two practical femtocell channel models: sparsely deployed scenario for rural areas and densely deployed scenario for urban areas, are investigated. For each scenario, two pricing schemes: uniform pricing and non-uniform pricing, are proposed. Then, the Stackelberg equilibriums for these proposed games are studied, and an effective distributed interference price bargaining algorithm with guaranteed convergence is proposed for the uniform-pricing case. Finally, numerical examples are presented to verify the proposed studies. It is shown that the proposed algorithms are effective in resource allocation and macrocell protection requiring minimal network overhead for spectrum-sharing-based two-tier femtocell networks.Comment: 27 pages, 7 figures, Submitted to JSA

    Dynamic Spectrum Reservation for CR Networks in the Presence of Channel Failures: Channel Allocation and Reliability Analysis

    Full text link
    (c) 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this[EN] Providing channel access opportunities for new service requests and guaranteeing continuous connections for ongoing flows until service completion are two challenges for service provisioning in wireless networks. Channel failures, which are typically caused by hardware and software failures or/and by intrinsic instability in radio transmissions, can easily result in network performance degradation. In cognitive radio networks (CRNs), secondary transmissions are inherently vulnerable to connection breaks due to licensed users' arrivals as well as channel failures. To explore the advantages of channel reservation on performance improvement in error-prone channels, we propose and analyze a dynamic channel reservation (DCR) algorithm and a dynamic spectrum access (DSA) scheme with three access privilege variations. The key idea of the DCR algorithm is to reserve a dynamically adjustable number of channels for the interrupted services to maintain service retainability for ongoing users or to enhance channel availability for new users. Furthermore, the DCR algorithm is embedded in the DSA scheme enabling spectrum access of primary and secondary users with different access privileges based on access flexibility for licensed shared access. The performance of such a CRN in the presence of homogeneous and heterogeneous channel failures is investigated considering different channel failure and repair rates.The work of V. Pla was supported by the Spanish Ministry of Economy, Industry and Competitiveness under Grant TIN2013-47272-C2-1-R.Balapuwaduge, IAM.; Li, F.; Pla, V. (2018). Dynamic Spectrum Reservation for CR Networks in the Presence of Channel Failures: Channel Allocation and Reliability Analysis. IEEE Transactions on Wireless Communications. 17(2):882-898. https://doi.org/10.1109/TWC.2017.2772240S88289817

    Distributed spectrum leasing via cooperation

    Get PDF
    “Cognitive radio” networks enable the coexistence of primary (licensed) and secondary (unlicensed) terminals. Conventional frameworks, namely commons and property-rights models, while being promising in certain aspects, appear to have significant drawbacks for implementation of large-scale distributed cognitive radio networks, due to the technological and theoretical limits on the ability of secondary activity to perform effective spectrum sensing and on the stringent constraints on protocols and architectures. To address the problems highlighted above, the framework of distributed spectrum leasing via cross-layer cooperation (DiSC) has been recently proposed as a basic mechanism to guide the design of decentralized cognitive radio networks. According to this framework, each primary terminal can ”lease” a transmission opportunity to a local secondary terminal in exchange for cooperation (relaying) as long as secondary quality-of-service (QoS) requirements are satisfied. The dissertation starts by investigating the performance bounds from an information-theoretical standpoint by focusing on the scenario of a single primary user and multiple secondary users with private messages. Achievable rate regions are derived for discrete memoryless and Gaussian models by considering Decode-and-Forward (DF), with both standard and parity-forwarding techniques, and Compress-and-Forward (CF), along with superposition coding at the secondary nodes. Then a framework is proposed that extends the analysis to multiple primary users and multiple secondary users by leveraging the concept of Generalized Nash Equilibrium. Accordingly, multiple primary users, each owning its own spectral resource, compete for the cooperation of the available secondary users under a shared constraint on all spectrum leasing decisions set by the secondary QoS requirements. A general formulation of the problem is given and solutions are proposed with different signaling requirements among the primary users. The novel idea of interference forwarding as a mechanism to enable DiSC is proposed, whereby primary users lease part of their spectrum to the secondary users if the latter assist by forwarding information about the interference to enable interference mitigation at the primary receivers. Finally, an application of DiSC in multi-tier wireless networks such as femtocells overlaid by macrocells whereby the femtocell base station acts as a relay for the macrocell users is presented. The performance advantages of the proposed application are evaluated by studying the transmission reliability of macro and femto users for a quasi-static fading channel in terms of outage probability and diversity-multiplexing trade-off for uplink and, more briefly, for downlink
    corecore