2,790 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Towards delay-aware container-based Service Function Chaining in Fog Computing

    Get PDF
    Recently, the fifth-generation mobile network (5G) is getting significant attention. Empowered by Network Function Virtualization (NFV), 5G networks aim to support diverse services coming from different business verticals (e.g. Smart Cities, Automotive, etc). To fully leverage on NFV, services must be connected in a specific order forming a Service Function Chain (SFC). SFCs allow mobile operators to benefit from the high flexibility and low operational costs introduced by network softwarization. Additionally, Cloud computing is evolving towards a distributed paradigm called Fog Computing, which aims to provide a distributed cloud infrastructure by placing computational resources close to end-users. However, most SFC research only focuses on Multi-access Edge Computing (MEC) use cases where mobile operators aim to deploy services close to end-users. Bi-directional communication between Edges and Cloud are not considered in MEC, which in contrast is highly important in a Fog environment as in distributed anomaly detection services. Therefore, in this paper, we propose an SFC controller to optimize the placement of service chains in Fog environments, specifically tailored for Smart City use cases. Our approach has been validated on the Kubernetes platform, an open-source orchestrator for the automatic deployment of micro-services. Our SFC controller has been implemented as an extension to the scheduling features available in Kubernetes, enabling the efficient provisioning of container-based SFCs while optimizing resource allocation and reducing the end-to-end (E2E) latency. Results show that the proposed approach can lower the network latency up to 18% for the studied use case while conserving bandwidth when compared to the default scheduling mechanism

    Distributed Anomaly Detection using Autoencoder Neural Networks in WSN for IoT

    Full text link
    Wireless sensor networks (WSN) are fundamental to the Internet of Things (IoT) by bridging the gap between the physical and the cyber worlds. Anomaly detection is a critical task in this context as it is responsible for identifying various events of interests such as equipment faults and undiscovered phenomena. However, this task is challenging because of the elusive nature of anomalies and the volatility of the ambient environments. In a resource-scarce setting like WSN, this challenge is further elevated and weakens the suitability of many existing solutions. In this paper, for the first time, we introduce autoencoder neural networks into WSN to solve the anomaly detection problem. We design a two-part algorithm that resides on sensors and the IoT cloud respectively, such that (i) anomalies can be detected at sensors in a fully distributed manner without the need for communicating with any other sensors or the cloud, and (ii) the relatively more computation-intensive learning task can be handled by the cloud with a much lower (and configurable) frequency. In addition to the minimal communication overhead, the computational load on sensors is also very low (of polynomial complexity) and readily affordable by most COTS sensors. Using a real WSN indoor testbed and sensor data collected over 4 consecutive months, we demonstrate via experiments that our proposed autoencoder-based anomaly detection mechanism achieves high detection accuracy and low false alarm rate. It is also able to adapt to unforeseeable and new changes in a non-stationary environment, thanks to the unsupervised learning feature of our chosen autoencoder neural networks.Comment: 6 pages, 7 figures, IEEE ICC 201
    • …
    corecore