68,665 research outputs found

    Efficient intrusion detection scheme based on SVM

    Get PDF
    The network intrusion detection problem is the focus of current academic research. In this paper, we propose to use Support Vector Machine (SVM) model to identify and detect the network intrusion problem, and simultaneously introduce a new optimization search method, referred to as Improved Harmony Search (IHS) algorithm, to determine the parameters of the SVM model for better classification accuracy. Taking the general mechanism network system of a growing city in China between 2006 and 2012 as the sample, this study divides the mechanism into normal network system and crisis network system according to the harm extent of network intrusion. We consider a crisis network system coupled with two to three normal network systems as paired samples. Experimental results show that SVMs based on IHS have a high prediction accuracy which can perform prediction and classification of network intrusion detection and assist in guarding against network intrusion

    Bayesian modeling and forecasting of 24-hour high-frequency volatility: A case study of the financial crisis

    Full text link
    This paper estimates models of high frequency index futures returns using `around the clock' 5-minute returns that incorporate the following key features: multiple persistent stochastic volatility factors, jumps in prices and volatilities, seasonal components capturing time of the day patterns, correlations between return and volatility shocks, and announcement effects. We develop an integrated MCMC approach to estimate interday and intraday parameters and states using high-frequency data without resorting to various aggregation measures like realized volatility. We provide a case study using financial crisis data from 2007 to 2009, and use particle filters to construct likelihood functions for model comparison and out-of-sample forecasting from 2009 to 2012. We show that our approach improves realized volatility forecasts by up to 50% over existing benchmarks.Comment: 48 pages, 7 figure

    The Determinants of Equity Risk and Their Forecasting Implications: A Quantile Regression Perspective

    Get PDF
    Several market and macro-level variables influence the evolution of equity risk in addition to the well-known volatility persistence. However, the impact of those covariates might change depending on the risk level, being different between low and high volatility states. By combining equity risk estimates, obtained from the Realized Range Volatility, corrected for microstructure noise and jumps, and quantile regression methods, we evaluate the forecasting implications of the equity risk determinants in different volatility states and, without distributional assumptions on the realized range innovations, we recover both the points and the conditional distribution forecasts. In addition, we analyse how the the relationships among the involved variables evolve over time, through a rolling window procedure. The results show evidence of the selected variables\u2019 relevant impacts and, particularly during periods of market stress, highlight heterogeneous effects across quantiles

    Paper per approfondimento

    Get PDF

    Risk management of precious metals

    Get PDF
    This paper examines volatility and correlation dynamics in price returns of gold, silver, platinum and palladium, and explores the corresponding risk management implications for market risk and hedging. Value-at-Risk (VaR) is used to analyze the downside market risk associated with investments in precious metals, and to design optimal risk management strategies. We compute the VaR for major precious metals using the calibrated RiskMetrics, different GARCH models, and the semi-parametric Filtered Historical Simulation approach. Different risk management strategies are suggested, and the best approach for estimating VaR based on conditional and unconditional statistical tests is documented. The economic importance of the results is highlighted by assessing the daily capital charges from the estimated VaRs. The risk-minimizing portfolio weights and dynamic hedge ratios between different metal groups are also analyzed.risk management;value-at-risk;conditional volatility;precious metals

    Modelling and forecasting the kurtosis and returns distributions of financial markets: irrational fractional Brownian motion model approach

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link. Open accessThis paper reports a new methodology and results on the forecast of the numerical value of the fat tail(s) in asset returns distributions using the irrational fractional Brownian motion model. Optimal model parameter values are obtained from ïŹts to consecutive daily 2-year period returns of S&P500 index over [1950–2016], generating 33-time series estimations. Through an econometric model,the kurtosis of returns distributions is modelled as a function of these parameters. Subsequently an auto-regressive analysis on these parameters advances the modelling and forecasting of kurtosis and returns distributions, providing the accurate shape of returns distributions and measurement of Value at Risk

    Risk Management of Precious Metals

    Get PDF
    This paper examines volatility and correlation dynamics in price returns of gold, silver, platinum and palladium, and explores the corresponding risk management implications for market risk and hedging. Value-at-Risk (VaR) is used to analyze the downside market risk associated with investments in precious metals, and to design optimal risk management strategies. We compute the VaR for major precious metals using the calibrated RiskMetrics, different GARCH models, and the semi-parametric Filtered Historical Simulation approach. Different risk management strategies are suggested, and the best approach for estimating VaR based on conditional and unconditional statistical tests is documented. The economic importance of the results is highlighted by assessing the daily capital charges from the estimated VaRs. The risk-minimizing portfolio weights and dynamic hedge ratios between different metal groups are also analyzed.Precious metals; conditional volatility; risk management; value-at-risk
    • 

    corecore