699 research outputs found

    Optimal coverage multi-path scheduling scheme with multiple mobile sinks for WSNs

    Get PDF
    Wireless Sensor Networks (WSNs) are usually formed with many tiny sensors which are randomly deployed within sensing field for target monitoring. These sensors can transmit their monitored data to the sink in a multi-hop communication manner. However, the ‘hot spots’ problem will be caused since nodes near sink will consume more energy during forwarding. Recently, mobile sink based technology provides an alternative solution for the long-distance communication and sensor nodes only need to use single hop communication to the mobile sink during data transmission. Even though it is difficult to consider many network metrics such as sensor position, residual energy and coverage rate etc., it is still very important to schedule a reasonable moving trajectory for the mobile sink. In this paper, a novel trajectory scheduling method based on coverage rate for multiple mobile sinks (TSCR-M) is presented especially for large-scale WSNs. An improved particle swarm optimization (PSO) combined with mutation operator is introduced to search the parking positions with optimal coverage rate. Then the genetic algorithm (GA) is adopted to schedule the moving trajectory for multiple mobile sinks. Extensive simulations are performed to validate the performance of our proposed method

    Cross-layer design for network performance optimization in wireless networks

    Get PDF
    In this dissertation, I use mathematical optimization approach to solve the complex network problems. Paper l and paper 2 first show that ignoring the bandwidth constraint can lead to infeasible routing solutions. A sufficient condition on link bandwidth is proposed that makes a routing solution feasible, and then a mathematical optimization model based on this sufficient condition is provided. Simulation results show that joint optimization models can provide more feasible routing solutions and provide significant improvement on throughput and lifetime. In paper 3 and paper 4, an interference model is proposed and a transmission scheduling scheme is presented to minimize the end-to-end delay. This scheduling scheme is designed based on integer linear programming and involves interference modeling. Using this schedule, there are no conflicting transmissions at any time. Through simulation, it shows that the proposed link scheduling scheme can significantly reduce end-to-end latency. Since to compute the maximum throughput is an NP-hard problem, efficient heuristics are presented in Paper 5 that use sufficient conditions instead of the computationally-expensive-to-get optimal condition to capture the mutual conflict relation in a collision domain. Both one-way transmission and two-way transmission are considered. Simulation results show that the proposed algorithms improve network throughput and reduce energy consumption, with significant improvement over previous work on both aspects. Paper 6 studies the complicated tradeoff relation among multiple factors that affect the sensor network lifetime and proposes an adaptive multi-hop clustering algorithm. It realizes the best tradeoff among multiple factors and outperforms others that do not. It is adaptive in the sense the clustering topology changes over time in order to have the maximum lifetime --Abstract, page iv

    Pemodelan Multi-Layer Multihop Routing Protocol Pada Jaringan Wireless Sensor Network

    Get PDF
    Beberapa tahun terakhir penelitian tentang pembagian tingkatan berdasarkan jarak untuk menghemat penggunakaan energi dalam transmisi data routing protocol banyak dilakukan. Dalam beberapa penelitian pembagian berdasarkan jarak ini terbukti menghemat energi cukup efisien. Dalam penelitian ini, peneliti mencoba membagi node berdasarkan jarak antara node ke basestation dan mengklasifikasikan nya kedalam tingkatan yang disebut oleh peneliti sebagai Multi-Layer. Selain itu peneliti menggunakan metode multihop sebagai metode routing yang di pilih untuk diterapkan dalam jaringan sensor nirkabel. Dalam simulasi yang peneliti lakukan menggunkan software Matlab, peneliti mampu menghemat penggunaan energi leader node sebesar 12,2% dibanding penelitian sebelumnya, dan energi total jaringan sebesar 2,9%

    A Hybrid Optimized Weighted Minimum Spanning Tree for the Shortest Intrapath Selection in Wireless Sensor Network

    Get PDF
    Wireless sensor network (WSN) consists of sensor nodes that need energy efficient routing techniques as they have limited battery power, computing, and storage resources. WSN routing protocols should enable reliable multihop communication with energy constraints. Clustering is an effective way to reduce overheads and when this is aided by effective resource allocation, it results in reduced energy consumption. In this work, a novel hybrid evolutionary algorithm called Bee Algorithm-Simulated Annealing Weighted Minimal Spanning Tree (BASA-WMST) routing is proposed in which randomly deployed sensor nodes are split into the best possible number of independent clusters with cluster head and optimal route. The former gathers data from sensors belonging to the cluster, forwarding them to the sink. The shortest intrapath selection for the cluster is selected using Weighted Minimum Spanning Tree (WMST). The proposed algorithm computes the distance-based Minimum Spanning Tree (MST) of the weighted graph for the multihop network. The weights are dynamically changed based on the energy level of each sensor during route selection and optimized using the proposed bee algorithm simulated annealing algorithm

    A survey of network lifetime maximization techniques in wireless sensor networks

    No full text
    Emerging technologies, such as the Internet of things, smart applications, smart grids and machine-to-machine networks stimulate the deployment of autonomous, selfconfiguring, large-scale wireless sensor networks (WSNs). Efficient energy utilization is crucially important in order to maintain a fully operational network for the longest period of time possible. Therefore, network lifetime (NL) maximization techniques have attracted a lot of research attention owing to their importance in terms of extending the flawless operation of battery-constrained WSNs. In this paper, we review the recent developments in WSNs, including their applications, design constraints and lifetime estimation models. Commencing with the portrayal of rich variety definitions of NL design objective used for WSNs, the family of NL maximization techniques is introduced and some design guidelines with examples are provided to show the potential improvements of the different design criteri

    EDOCR: ENERGY DENSITY ON-DEMAND CLUSTER ROUTING IN WIRELESS SENSOR NETWORKS

    Get PDF
    Energy management is one of the critical parameters in Wireless Sensor Networks. In this paper we attempt for a solution to balance the energy usage for maximizing the network lifetime, increase the packet delivery ratio and throughput. Our proposed algorithm is based on Energy Density of the clusters in Wireless Sensor Networks. The cluster head is selected using two step method and on-demand routing approach to calculate the balanced energy shortest path from source to sink. This unique approach maintains the balanced energy utilization among all nodes by selecting the different cluster heads dynamically. Our simulation results have compared with one of the plain routing scheme (EBRP) and cluster based routing (TSCHS), which shows the significant improvements in minimizing the delay and energy utilization and maximizing the network lifetime and throughput with respect to these works

    An effective data-collection scheme with AUV path planning in underwater wireless sensor networks

    Get PDF
    Data collection in underwater wireless sensor networks (UWSNs) using autonomous underwater vehicles (AUVs) is a more robust solution than traditional approaches, instead of transmitting data from each node to a destination node. However, the design of delay-aware and energy-efficient path planning for AUVs is one of the most crucial problems in collecting data for UWSNs. To reduce network delay and increase network lifetime, we proposed a novel reliable AUV-based data-collection routing protocol for UWSNs. The proposed protocol employs a route planning mechanism to collect data using AUVs. The sink node directs AUVs for data collection from sensor nodes to reduce energy consumption. First, sensor nodes are organized into clusters for better scalability, and then, these clusters are arranged into groups to assign an AUV to each group. Second, the traveling path for each AUV is crafted based on the Markov decision process (MDP) for the reliable collection of data. The simulation results affirm the effectiveness and efficiency of the proposed technique in terms of throughput, energy efficiency, delay, and reliability. © 2022 Wahab Khan et al
    • …
    corecore