46 research outputs found

    A Comprehensive Review of Distributed Coding Algorithms for Visual Sensor Network (VSN)

    Get PDF
    Since the invention of low cost camera, it has been widely incorporated into the sensor node in Wireless Sensor Network (WSN) to form the Visual Sensor Network (VSN). However, the use of camera is bringing with it a set of new challenges, because all the sensor nodes are powered by batteries. Hence, energy consumption is one of the most critical issues that have to be taken into consideration. In addition to this, the use of batteries has also limited the resources (memory, processor) that can be incorporated into the sensor node. The life time of a VSN decreases quickly as the image is transferred to the destination. One of the solutions to the aforementioned problem is to reduce the data to be transferred in the network by using image compression. In this paper, a comprehensive survey and analysis of distributed coding algorithms that can be used to encode images in VSN is provided. This also includes an overview of these algorithms, together with their advantages and deficiencies when implemented in VSN. These algorithms are then compared at the end to determine the algorithm that is more suitable for VSN

    A Dependable Slepian-Wolf Coding Based Clustering Algorithm for Data Aggregation in Wireless Sensor Networks

    Get PDF
    International audienceThis paper considers the Slepian-Wolf coding based data aggregation problem and the corresponding dependable clustering problem in wireless sensor networks (WSNs). A dependable Slepian-Wolf coding based clustering (DSWC) algorithm is proposed to provide dependable clustering against cluster-head failures. The proposed D-SWC algorithm attempts to elect a primary cluster head and a backup cluster head for each cluster member during clustering so that once a failure occurs to the primary cluster head the cluster members within the failed cluster can promptly switchover to the backup cluster head and thus recover the connectivity of the failed cluster to the data sink without waiting for the next-round clustering to be performed. Simulation results show that the DSWC algorithm can effectively increase the amount of data transmitted to the data sink as compared with an existing nondependable clustering algorithm for Slepian-Wolf coding based data aggregation in WSNs

    A dependable Slepian-Wolf coding based clustering algorithm for data aggregation in wireless sensor networks

    Full text link

    On Network Correlated Data Gathering

    Get PDF
    We consider the problem of correlated data gathering by a network with a sink node and a tree communication structure, where the goal is to minimize the total transmission cost of transporting the information collected by the nodes, to the sink node. Two coding strategies are analyzed: a Slepian-Wolf model where optimal coding is complex and transmission optimization is simple, and a joint entropy coding model with explicit communication where coding is simple and transmission optimization is difficult. This problem requires a joint optimization of the rate allocation at the nodes and of the transmission structure. For the Slepian-Wolf setting, we derive a closed form solution and an efficient distributed approximation algorithm with a good performance. For the explicit communication case, we prove that building an optimal data gathering tree is NP-complete and we propose various distributed approximation algorithms

    A Survey on Energy-Efficient Strategies in Static Wireless Sensor Networks

    Get PDF
    A comprehensive analysis on the energy-efficient strategy in static Wireless Sensor Networks (WSNs) that are not equipped with any energy harvesting modules is conducted in this article. First, a novel generic mathematical definition of Energy Efficiency (EE) is proposed, which takes the acquisition rate of valid data, the total energy consumption, and the network lifetime of WSNs into consideration simultaneously. To the best of our knowledge, this is the first time that the EE of WSNs is mathematically defined. The energy consumption characteristics of each individual sensor node and the whole network are expounded at length. Accordingly, the concepts concerning EE, namely the Energy-Efficient Means, the Energy-Efficient Tier, and the Energy-Efficient Perspective, are proposed. Subsequently, the relevant energy-efficient strategies proposed from 2002 to 2019 are tracked and reviewed. Specifically, they respectively are classified into five categories: the Energy-Efficient Media Access Control protocol, the Mobile Node Assistance Scheme, the Energy-Efficient Clustering Scheme, the Energy-Efficient Routing Scheme, and the Compressive Sensing--based Scheme. A detailed elaboration on both of the basic principle and the evolution of them is made. Finally, further analysis on the categories is made and the related conclusion is drawn. To be specific, the interdependence among them, the relationships between each of them, and the Energy-Efficient Means, the Energy-Efficient Tier, and the Energy-Efficient Perspective are analyzed in detail. In addition, the specific applicable scenarios for each of them and the relevant statistical analysis are detailed. The proportion and the number of citations for each category are illustrated by the statistical chart. In addition, the existing opportunities and challenges facing WSNs in the context of the new computing paradigm and the feasible direction concerning EE in the future are pointed out

    Efficient decentralized communications in sensor networks

    Get PDF
    This thesis is concerned with problems in decentralized communication in large networks. Namely, we address the problems of joint rate allocation and transmission of data sources measured at nodes, and of controlling the multiple access of sources to a shared medium. In our study, we consider in particular the important case of a sensor network measuring correlated data. In the first part of this thesis, we consider the problem of correlated data gathering by a network with a sink node and a tree communication structure, where the goal is to minimize the total transmission cost of transporting the information collected by the nodes, to the sink node. Two coding strategies are analyzed: a Slepian-Wolf model where optimal coding is complex and transmission optimization is simple, and a joint entropy coding model with explicit communication where coding is simple and transmission optimization is difficult. This problem requires a joint optimization of the rate allocation at the nodes and of the transmission structure. For the Slepian-Wolf setting, we derive a closed form solution and an efficient distributed approximation algorithm with a good performance. We generalize our results to the case of multiple sinks. For the explicit communication case, we prove that building an optimal data gathering tree is NP-complete and we propose various distributed approximation algorithms. We compare asymptotically, for dense networks, the total costs associated with Slepian-Wolf coding and explicit communication, by finding their corresponding scaling laws and analyzing the ratio of their respective costs. We argue that, for large networks and under certain conditions on the correlation structure, "intelligent", but more complex Slepian-Wolf coding provides unbounded gains over the widely used straightforward approach of opportunistic aggregation and compression by explicit communication. In the second part of this thesis, we consider a queuing problem in which the service rate of a queue is a function of a partially observed Markov chain, and in which the arrivals are controlled based on those partial observations so as to keep the system in a desirable mildly unstable regime. The optimal controller for this problem satisfies a separation property: we first compute a probability measure on the state space of the chain, namely the information state, then use this measure as the new state based on which to make control decisions. We give a formal description of the system considered and of its dynamics, we formalize and solve an optimal control problem, and we show numerical simulations to illustrate with concrete examples properties of the optimal control law. We show how the ergodic behavior of our queuing model is characterized by an invariant measure over all possible information states, and we construct that measure. Our results may be applied for designing efficient and stable algorithms for medium access control in multiple accessed systems, in particular for sensor networks

    Data aggregation techniques in sensor networks: A survey

    Get PDF
    Wireless sensor networks consist of sensor nodes with sensing and communication capabilities. We focus on data aggregation problems in energy constrained sensor networks. The main goal of data aggregation algorithms is to gather and aggregate data in an energy efficient manner so that network lifetime is enhanced. In this paper, we present a survey of data aggregation algorithms in wireless sensor networks. We compare and contrast different algorithms on the basis of performance measures such as lifetime, latency and data accuracy. We conclude with possible future research directions

    Data Collection using Miniature Aerial Vehicles in Wireless Sensor Networks

    Get PDF

    MAXIMUM CONNECTED LOAD BALANCING COVER TREE ALGORITHM FOR WIRELESS SENSOR NETWORK

    Get PDF
    In wireless sensor network the main problem is in the network lifetime, power transmission, energy consumption, speed and bandwidth for transmitting the packets and another problem is that the sink node can connect only with the limited nodes if more number of nodes is connected means then there may be occurrence of traffic and the data information can be eliminated. In order to overcome this problem maximum connected load balancing cover tree (MCLCT) algorithm is used. In various studies it is observed that the MCLCT has more network lifetime, power transmission and energy consumption when compared to the other methods and also to solve the optimization problem simulated annealing algorithm is used to transmit the data which form minimum movement in wireless sensor network and which can achieve both target coverage (TCOV) and network connectivity (NCON)
    corecore