8 research outputs found

    Communication between nodes for autonomic and distributed management

    Get PDF
    Doutoramento conjunto MAPi em InformáticaOver the last decade, the most widespread approaches for traditional management were based on the Simple Network Management Protocol (SNMP) or Common Management Information Protocol (CMIP). However, they both have several problems in terms of scalability, due to their centralization characteristics. Although the distributed management approaches exhibit better performance in terms of scalability, they still underperform regarding communication costs, autonomy, extensibility, exibility, robustness, and cooperation between network nodes. The cooperation between network nodes normally requires excessive overheads for synchronization and dissemination of management information in the network. For emerging dynamic and large-scale networking environments, as envisioned in Next Generation Networks (NGNs), exponential growth in the number of network devices and mobile communications and application demands is expected. Thus, a high degree of management automation is an important requirement, along with new mechanisms that promote it optimally and e ciently, taking into account the need for high cooperation between the nodes. Current approaches for self and autonomic management allow the network administrator to manage large areas, performing fast reaction and e ciently facing unexpected problems. The management functionalities should be delegated to a self-organized plane operating within the network, that decrease the network complexity and the control information ow, as opposed to centralized or external servers. This Thesis aims to propose and develop a communication framework for distributed network management which integrates a set of mechanisms for initial communication, exchange of management information, network (re) organization and data dissemination, attempting to meet the autonomic and distributed management requirements posed by NGNs. The mechanisms are lightweight and portable, and they can operate in di erent hardware architectures and include all the requirements to maintain the basis for an e cient communication between nodes in order to ensure autonomic network management. Moreover, those mechanisms were explored in diverse network conditions and events, such as device and link errors, di erent tra c/network loads and requirements. The results obtained through simulation and real experimentation show that the proposed mechanisms provide a lower convergence time, smaller overhead impact in the network, faster dissemination of management information, increase stability and quality of the nodes associations, and enable the support for e cient data information delivery in comparison to the base mechanisms analyzed. Finally, all mechanisms for communication between nodes proposed in this Thesis, that support and distribute the management information and network control functionalities, were devised and developed to operate in completely decentralized scenarios.Durante a última década, protocolos como Simple Network Management Protocol (SNMP) ou Common Management Information Protocol (CMIP) foram as abordagens mais comuns para a gestão tradicional de redes. Essas abordagens têm vários problemas em termos de escalabilidade, devido às suas características de centralização. Apresentando um melhor desempenho em termos de escalabilidade, as abordagens de gestão distribuída, por sua vez, são vantajosas nesse sentido, mas também apresentam uma série de desvantagens acerca do custo elevado de comunicação, autonomia, extensibilidade, exibilidade, robustez e cooperação entre os nós da rede. A cooperação entre os nós presentes na rede é normalmente a principal causa de sobrecarga na rede, uma vez que necessita de colectar, sincronizar e disseminar as informações de gestão para todos os nós nela presentes. Em ambientes dinâmicos, como é o caso das redes atuais e futuras, espera-se um crescimento exponencial no número de dispositivos, associado a um grau elevado de mobilidade dos mesmos na rede. Assim, o grau elevado de funções de automatiza ção da gestão da rede é uma exigência primordial, bem como o desenvolvimento de novos mecanismos e técnicas que permitam essa comunicação de forma optimizada e e ciente. Tendo em conta a necessidade de elevada cooperação entre os elementos da rede, as abordagens atuais para a gestão autonómica permitem que o administrador possa gerir grandes áreas de forma rápida e e ciente frente a problemas inesperados, visando diminuir a complexidade da rede e o uxo de informações de controlo nela gerados. Nas gestões autonómicas a delegação de operações da rede é suportada por um plano auto-organizado e não dependente de servidores centralizados ou externos. Com base nos tipos de gestão e desa os acima apresentados, esta Tese tem como principal objetivo propor e desenvolver um conjunto de mecanismos necessários para a criação de uma infra-estrutura de comunicação entre nós, na tentativa de satisfazer as exigências da gestão auton ómica e distribuída apresentadas pelas redes de futura geração. Nesse sentido, mecanismos especí cos incluindo inicialização e descoberta dos elementos da rede, troca de informação de gestão, (re) organização da rede e disseminação de dados foram elaborados e explorados em diversas condições e eventos, tais como: falhas de ligação, diferentes cargas de tráfego e exigências de rede. Para além disso, os mecanismos desenvolvidos são leves e portáveis, ou seja, podem operar em diferentes arquitecturas de hardware e contemplam todos os requisitos necessários para manter a base de comunicação e ciente entre os elementos da rede. Os resultados obtidos através de simulações e experiências reais comprovam que os mecanismos propostos apresentam um tempo de convergência menor para descoberta e troca de informação, um menor impacto na sobrecarga da rede, disseminação mais rápida da informação de gestão, aumento da estabilidade e a qualidade das ligações entre os nós e entrega e ciente de informações de dados em comparação com os mecanismos base analisados. Finalmente, todos os mecanismos desenvolvidos que fazem parte da infrastrutura de comunicação proposta foram concebidos e desenvolvidos para operar em cenários completamente descentralizados

    Video Caching, Analytics and Delivery at the Wireless Edge: A Survey and Future Directions

    Get PDF
    Future wireless networks will provide high bandwidth, low-latency, and ultra-reliable Internet connectivity to meet the requirements of different applications, ranging from mobile broadband to the Internet of Things. To this aim, mobile edge caching, computing, and communication (edge-C3) have emerged to bring network resources (i.e., bandwidth, storage, and computing) closer to end users. Edge-C3 allows improving the network resource utilization as well as the quality of experience (QoE) of end users. Recently, several video-oriented mobile applications (e.g., live content sharing, gaming, and augmented reality) have leveraged edge-C3 in diverse scenarios involving video streaming in both the downlink and the uplink. Hence, a large number of recent works have studied the implications of video analysis and streaming through edge-C3. This article presents an in-depth survey on video edge-C3 challenges and state-of-the-art solutions in next-generation wireless and mobile networks. Specifically, it includes: a tutorial on video streaming in mobile networks (e.g., video encoding and adaptive bitrate streaming); an overview of mobile network architectures, enabling technologies, and applications for video edge-C3; video edge computing and analytics in uplink scenarios (e.g., architectures, analytics, and applications); and video edge caching, computing and communication methods in downlink scenarios (e.g., collaborative, popularity-based, and context-aware). A new taxonomy for video edge-C3 is proposed and the major contributions of recent studies are first highlighted and then systematically compared. Finally, several open problems and key challenges for future research are outlined

    Counteracting free riding in pure peer-to-peer networks

    Get PDF
    Ankara : The Department of Computer Engineering and The Institute of Engineering and Science of Bilkent University, 2008.Thesis (Ph.D.) -- Bilkent University, 2008.Includes bibliographical references leaves 119-127.The peer-to-peer (P2P) network paradigm has attracted a significant amount of interest as a popular and successful alternative to traditional client-server model for resource sharing and content distribution. However, researchers have observed the existence of high degrees of free riding in P2P networks which poses a serious threat to effectiveness and efficient operation of these networks, and hence to their future. Therefore, eliminating or reducing the impact of free riding on P2P networks has become an important issue to investigate and a considerable amount of research has been conducted on it. In this thesis, we propose two novel solutions to reduce the adverse effects of free riding on P2P networks and to motivate peers to contribute to P2P networks. These solutions are also intended to lead to performance gains for contributing peers and to penalize free riders. As the first solution, we propose a distributed and localized scheme, called Detect and Punish Method (DPM), which depends on detection and punishment of free riders. Our second solution to the free riding problem is a connection-time protocol, called P2P Connection Management Protocol (PCMP), which is based on controlling and managing link establishments among peers according to their contributions. To evaluate the proposed solutions and compare them with other alternatives, we developed a new P2P network simulator and conducted extensive simulation experiments. Our simulation results show that employing our solutions in a P2P network considerably reduces the adverse effects of free riding and improves the overall performance of the network. Furthermore, we observed that P2P networks utilizing the proposed solutions become more robust and scalable.Karakaya, K MuratPh.D

    Flexible cross layer optimization for fixed and mobile broadband telecommunication networks and beyond

    Get PDF
    In der heutigen Zeit, in der das Internet im Allgemeinen und Telekommunikationsnetze im Speziellen kritische Infrastrukturen erreicht haben, entstehen hohe Anforderungen und neue Herausforderungen an den Datentransport in Hinsicht auf Effizienz und Flexibilität. Heutige Telekommunikationsnetze sind jedoch rigide und statisch konzipiert, was nur ein geringes Maß an Flexibilität und Anpassungsfähigkeit der Netze ermöglicht und darüber hinaus nur im begrenzten Maße die Wichtigkeit von Datenflüssen im wiederspiegelt. Diverse Lösungsansätze zum kompletten Neuentwurf als auch zum evolutionären Konzept des Internet wurden ausgearbeitet und spezifiziert, um diese neuartigen Anforderungen und Herausforderungen adäquat zu adressieren. Einer dieser Ansätze ist das Cross Layer Optimierungs-Paradigma, welches eine bisher nicht mögliche direkte Kommunikation zwischen verteilten Funktionalitäten unterschiedlichen Typs ermöglicht, um ein höheres Maß an Dienstgüte zu erlangen. Ein wesentlicher Indikator, welcher die Relevanz dieses Ansatzes unterstreicht, zeichnet sich durch die Programmierbarkeit von Netzwerkfunktionalitäten aus, welche sich aus der Evolution von heutigen hin zu zukünftigen Netzen erkennen lässt. Dieses Konzept wird als ein vielversprechender Lösungsansatz für Kontrollmechanismen von Diensten in zukünftigen Kernnetzwerken erachtet. Dennoch existiert zur Zeit der Entstehung dieser Doktorarbeit kein Ansatz zur Cross Layer Optimierung in Festnetz-und Mobilfunknetze, welcher der geforderten Effizienz und Flexibilität gerecht wird. Die übergeordnete Zielsetzung dieser Arbeit adressiert die Konzeptionierung, Entwicklung und Evaluierung eines Cross Layer Optimierungsansatzes für Telekommunikationsnetze. Einen wesentlichen Schwerpunkt dieser Arbeit stellt die Definition einer theoretischen Konzeptionierung und deren praktischer Realisierung eines Systems zur Cross Layer Optimierung für Telekommunikationsnetze dar. Die durch diese Doktorarbeit analysierten wissenschaftlichen Fragestellungen betreffen u.a. die Anwendbarkeit von Cross Layer Optimierungsansätzen auf Telekommunikationsnetzwerke; die Betrachtung neuartiger Anforderungen; existierende Konzepte, Ansätze und Lösungen; die Abdeckung neuer Funktionalitäten durch bereits existierende Lösungen; und letztendlich den erkennbaren Mehrwert des neu vorgeschlagenen Konzepts gegenüber den bestehenden Lösungen. Die wissenschaftlichen Beiträge dieser Doktorarbeit lassen sich grob durch vier Säulen skizzieren: Erstens werden der Stand der Wissenschaft und Technik analysiert und bewertet, Anforderungen erhoben und eine Lückenanalyse vorgenommen. Zweitens werden Herausforderungen, Möglichkeiten, Limitierungen und Konzeptionierungsaspekte eines Modells zur Cross Layer Optimierung analysiert und evaluiert. Drittens wird ein konzeptionelles Modell - Generic Adaptive Resource Control (GARC) - spezifiziert, als Prototyp realisiert und ausgiebig validiert. Viertens werden theoretische und praktische Beiträge dieser Doktorarbeit vertiefend analysiert und bewertet.As the telecommunication world moves towards a data-only network environment, signaling, voice and other data are similarly transported as Internet Protocol packets. New requirements, challenges and opportunities are bound to this transition and influence telecommunication architectures accordingly. In this time in which the Internet in general, and telecommunication networks in particular, have entered critical infrastructures and systems, it is of high importance to guarantee efficient and flexible data transport. A certain level of Quality-of-Service (QoS) for critical services is crucial even during overload situations in the access and core network, as these two are the bottlenecks in the network. However, the current telecommunication architecture is rigid and static, which offers very limited flexibility and adaptability. Several concepts on clean slate as well as evolutionary approaches have been proposed and defined in order to cope with these new challenges and requirements. One of these approaches is the Cross Layer Optimization paradigm. This concept omits the strict separation and isolation of the Application-, Control- and Network-Layers as it enables interaction and fosters Cross Layer Optimization among them. One indicator underlying this trend is the programmability of network functions, which emerges clearly during the telecommunication network evolution towards the Future Internet. The concept is regarded as one solution for service control in future mobile core networks. However, no standardized approach for Cross Layer signaling nor optimizations in between the individual layers have been standardized at the time this thesis was written. The main objective of this thesis is the design, implementation and evaluation of a Cross Layer Optimization concept on telecommunication networks. A major emphasis is given to the definition of a theoretical model and its practical realization through the implementation of a Cross Layer network resource optimization system for telecommunication systems. The key questions answered through this thesis are: in which way can the Cross Layer Optimization paradigm be applied on telecommunication networks; which new requirements arise; which of the required functionalities cannot be covered through existing solutions, what other conceptual approaches already exist and finally whether such a new concept is viable. The work presented in this thesis and its contributions can be summarized in four parts: First, a review of related work, a requirement analysis and a gap analysis were performed. Second, challenges, limitations, opportunities and design aspects for specifying an optimization model between application and network layer were formulated. Third, a conceptual model - Generic Adaptive Resource Control (GARC) - was specified and its prototypical implementation was realized. Fourth, the theoretical and practical thesis contributions was validated and evaluated

    Actas da 10ª Conferência sobre Redes de Computadores

    Get PDF
    Universidade do MinhoCCTCCentro AlgoritmiCisco SystemsIEEE Portugal Sectio

    QoS-aware architectures, technologies, and middleware for the cloud continuum

    Get PDF
    The recent trend of moving Cloud Computing capabilities to the Edge of the network is reshaping how applications and their middleware supports are designed, deployed, and operated. This new model envisions a continuum of virtual resources between the traditional cloud and the network edge, which is potentially more suitable to meet the heterogeneous Quality of Service (QoS) requirements of diverse application domains and next-generation applications. Several classes of advanced Internet of Things (IoT) applications, e.g., in the industrial manufacturing domain, are expected to serve a wide range of applications with heterogeneous QoS requirements and call for QoS management systems to guarantee/control performance indicators, even in the presence of real-world factors such as limited bandwidth and concurrent virtual resource utilization. The present dissertation proposes a comprehensive QoS-aware architecture that addresses the challenges of integrating cloud infrastructure with edge nodes in IoT applications. The architecture provides end-to-end QoS support by incorporating several components for managing physical and virtual resources. The proposed architecture features: i) a multilevel middleware for resolving the convergence between Operational Technology (OT) and Information Technology (IT), ii) an end-to-end QoS management approach compliant with the Time-Sensitive Networking (TSN) standard, iii) new approaches for virtualized network environments, such as running TSN-based applications under Ultra-low Latency (ULL) constraints in virtual and 5G environments, and iv) an accelerated and deterministic container overlay network architecture. Additionally, the QoS-aware architecture includes two novel middlewares: i) a middleware that transparently integrates multiple acceleration technologies in heterogeneous Edge contexts and ii) a QoS-aware middleware for Serverless platforms that leverages coordination of various QoS mechanisms and virtualized Function-as-a-Service (FaaS) invocation stack to manage end-to-end QoS metrics. Finally, all architecture components were tested and evaluated by leveraging realistic testbeds, demonstrating the efficacy of the proposed solutions

    Internet-of-Things Streaming over Realtime Transport Protocol : A reusablility-oriented approach to enable IoT Streaming

    Get PDF
    The Internet of Things (IoT) as a group of technologies is gaining momentum to become a prominent factor for novel applications. The existence of high computing capability and the vast amount of IoT devices can be observed in the market today. However, transport protocols are also required to bridge these two advantages. This thesis discussed the delivery of IoT through the lens of a few selected streaming protocols, which are Realtime Transport Protocol(RTP) and its cooperatives like RTP Control Protocol(RTCP) and Session Initiation Protocol (SIP). These protocols support multimedia content transfer with a heavy-stream characteristic requirement. The main contribution of this work was the multi-layer reusability schema for IoT streaming over RTP. IoT streaming as a new concept was defined, and its characteristics were introduced to clarify its requirements. After that, the RTP stacks and their commercial implementation-VoLTE(Voice over LTE) were investigated to collect technical insights. Based on this distilled knowledge, the application areas for IoT usage and the adopting methods were described. In addition to the realization, prototypes were made to be a proof of concept for streaming IoT data with RTP functionalities on distanced devices. These prototypes proved the possibility of applying the same duo-plane architect (signaling/data transferring) widely used in RTP implementation for multimedia services. Following a standard IETF, this implementation is a minimal example of adopting an existing standard for IoT streaming applications
    corecore