77 research outputs found

    RSSI-Based Self-Localization with Perturbed Anchor Positions

    Full text link
    We consider the problem of self-localization by a resource-constrained mobile node given perturbed anchor position information and distance estimates from the anchor nodes. We consider normally-distributed noise in anchor position information. The distance estimates are based on the log-normal shadowing path-loss model for the RSSI measurements. The available solutions to this problem are based on complex and iterative optimization techniques such as semidefinite programming or second-order cone programming, which are not suitable for resource-constrained environments. In this paper, we propose a closed-form weighted least-squares solution. We calculate the weights by taking into account the statistical properties of the perturbations in both RSSI and anchor position information. We also estimate the bias of the proposed solution and subtract it from the proposed solution. We evaluate the performance of the proposed algorithm considering a set of arbitrary network topologies in comparison to an existing algorithm that is based on a similar approach but only accounts for perturbations in the RSSI measurements. We also compare the results with the corresponding Cramer-Rao lower bound. Our experimental evaluation shows that the proposed algorithm can substantially improve the localization performance in terms of both root mean square error and bias.Comment: Accepted for publication in 28th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC 2017

    Exploiting the spatio-temporal channel properties of multiple antenna systems

    Get PDF
    The spatio-temporal channel properties of multiple antenna systems are exploited to obtain new approaches to localization and channel prediction. It is shown that a mobile station can be localized in multipath environments under the explicit consideration of scatterers. Thus, unlike conventional localization systems, the scatterers are used as an aid in localization. Moreover, it is shown that channel prediction in multiple antenna systems can be performed using linear prediction filters. This result is used to propose optimal and computationally inexpensive suboptimal channel predictors

    Cooperative localization and tracking of resource-constrained mobile nodes

    Get PDF

    Wireless Authentication Solution and TTCN-3 based Test Framework for ISO-15118 Wireless V2G Communication

    Get PDF
    Vehicle to grid (V2G) communication for electric vehicles and their charging points is already well established by the ISO 15118 standard. The standard allows vehicles to communicate with the charging station using the power cable, i.e. a wired link, but it is improved to enable wireless (WLAN) links as well. This paper aims to provide an implementation accomplishes a wireless authentication solution (WAS). With that the electric vehicles can establish V2G connection when approaching the charging pool, then identify and authenticate the driver and/or the vehicle. Furthermore, the paper presents a TTCN-3 based validation and verification (V&V) framework in order to test the conformance of the prototype implementation against the standard

    Disruptive Technologies with Applications in Airline & Marine and Defense Industries

    Get PDF
    Disruptive Technologies With Applications in Airline, Marine, Defense Industries is our fifth textbook in a series covering the world of Unmanned Vehicle Systems Applications & Operations On Air, Sea, and Land. The authors have expanded their purview beyond UAS / CUAS / UUV systems that we have written extensively about in our previous four textbooks. Our new title shows our concern for the emergence of Disruptive Technologies and how they apply to the Airline, Marine and Defense industries. Emerging technologies are technologies whose development, practical applications, or both are still largely unrealized, such that they are figuratively emerging into prominence from a background of nonexistence or obscurity. A Disruptive technology is one that displaces an established technology and shakes up the industry or a ground-breaking product that creates a completely new industry.That is what our book is about. The authors think we have found technology trends that will replace the status quo or disrupt the conventional technology paradigms.The authors have collaborated to write some explosive chapters in Book 5:Advances in Automation & Human Machine Interface; Social Media as a Battleground in Information Warfare (IW); Robust cyber-security alterative / replacement for the popular Blockchain Algorithm and a clean solution for Ransomware; Advanced sensor technologies that are used by UUVs for munitions characterization, assessment, and classification and counter hostile use of UUVs against U.S. capital assets in the South China Seas. Challenged the status quo and debunked the climate change fraud with verifiable facts; Explodes our minds with nightmare technologies that if they come to fruition may do more harm than good; Propulsion and Fuels: Disruptive Technologies for Submersible Craft Including UUVs; Challenge the ammunition industry by grassroots use of recycled metals; Changing landscape of UAS regulations and drone privacy; and finally, Detailing Bioterrorism Risks, Biodefense, Biological Threat Agents, and the need for advanced sensors to detect these attacks.https://newprairiepress.org/ebooks/1038/thumbnail.jp

    A Scalable and Secure System Architecture for Smart Buildings

    Get PDF
    Recent years has seen profound changes in building technologies both in Europe and worldwide. With the emergence of Smart Grid and Smart City concepts, the Smart Building has attracted considerable attention and rapid development. The introduction of novel information and communication technologies (ICT) enables an optimized resource utilization while improving the building performance and occupants' satisfaction over a broad spectrum of operations. However, literature and industry have drawn attention to certain barriers and challenges that inhibit its universal adoption. The Smart Building is a cyber-physical system, which as a whole is more than the sum of its parts. The heterogeneous combination of systems, processes, and practices requires a multidisciplinary research. This work proposes and validates a systems engineering approach to the investigation of the identified challenges and the development of a viable architecture for the future Smart Building. Firstly, a data model for the building management system (BMS) enables a semantic abstraction of both the ICT and the building construction. A high-level application programming interface (API) facilitates the creation of generic management algorithms and external applications, independent from each Smart Building instance, promoting the intelligence portability and lowering the cost. Moreover, the proposed architecture ensures the scalability regardless of the occupant activities and the complexity of the optimization algorithms. Secondly, a real-time message-oriented middleware, as a distributed embedded architecture within the building, empowers the interoperability of the ICT devices and networks and their integration into the BMS. The middleware scales to any building construction regardless of the devices' performance and connectivity limitations, while a secure architecture ensures the integrity of data and operations. An extensive performance and energy efficiency study validates the proposed design. A "building-in-the-loop" emulation system, based on discrete-event simulation, virtualizes the Smart Building elements (e.g., loads, storage, generation, sensors, actuators, users, etc.). The high integration with the message-oriented middleware keeps the BMS agnostic to the virtual nature of the emulated instances. Its cooperative multitasking and immerse parallelism allow the concurrent emulation of hundreds of elements in real time. The virtualization facilitates the development of energy management strategies and financial viability studies on the exact building and occupant activities without a prior investment in the necessary infrastructure. This work concludes with a holistic system evaluation using a case study of a university building as a practical retrofitting estimation. It illustrates the system deployment, and highlights how a currently under development energy management system utilizes the BMS and its data analytics for demand-side management applications

    Enabling individually entrusted routing security for open and decentralized community networks

    Get PDF
    Routing in open and decentralized networks relies on cooperation. However, the participation of unknown nodes and node administrators pursuing heterogeneous trust and security goals is a challenge. Community-mesh networks are good examples of such environments due to their open structure, decentralized management, and ownership. As a result, existing community networks are vulnerable to various attacks and are seriously challenged by the obligation to find consensus on the trustability of participants within an increasing user size and diversity. We propose a practical and novel solution enabling a secured but decentralized trust management. This work presents the design and analysis of securely-entrusted multi-topology routing (SEMTOR), a set of routing-protocol mechanisms that enable the cryptographically secured negotiation and establishment of concurrent and individually trusted routing topologies for infrastructure-less networks without relying on any central management. The proposed mechanisms have been implemented, tested, and evaluated for their correctness and performance to exclude non-trusted nodes from the network. Respective safety and liveness properties that are guaranteed by our protocol have been identified and proven with formal reasoning. Benchmarking results, based on our implementation as part of the BMX7 routing protocol and tested on real and minimal (OpenWRT, 10 Euro) routers, qualify the behaviour, performance, and scalability of our approach, supporting networks with hundreds of nodes despite the use of strong asymmetric cryptography.Peer ReviewedPostprint (author's final draft

    Compilation of thesis abstracts, September 2009

    Get PDF
    NPS Class of September 2009This quarter’s Compilation of Abstracts summarizes cutting-edge, security-related research conducted by NPS students and presented as theses, dissertations, and capstone reports. Each expands knowledge in its field.http://archive.org/details/compilationofsis109452751
    corecore