7,857 research outputs found

    Distributed convergence to Nash equilibria in two-network zero-sum games

    Full text link
    This paper considers a class of strategic scenarios in which two networks of agents have opposing objectives with regards to the optimization of a common objective function. In the resulting zero-sum game, individual agents collaborate with neighbors in their respective network and have only partial knowledge of the state of the agents in the other network. For the case when the interaction topology of each network is undirected, we synthesize a distributed saddle-point strategy and establish its convergence to the Nash equilibrium for the class of strictly concave-convex and locally Lipschitz objective functions. We also show that this dynamics does not converge in general if the topologies are directed. This justifies the introduction, in the directed case, of a generalization of this distributed dynamics which we show converges to the Nash equilibrium for the class of strictly concave-convex differentiable functions with locally Lipschitz gradients. The technical approach combines tools from algebraic graph theory, nonsmooth analysis, set-valued dynamical systems, and game theory

    Non-Convex Distributed Optimization

    Full text link
    We study distributed non-convex optimization on a time-varying multi-agent network. Each node has access to its own smooth local cost function, and the collective goal is to minimize the sum of these functions. We generalize the results obtained previously to the case of non-convex functions. Under some additional technical assumptions on the gradients we prove the convergence of the distributed push-sum algorithm to some critical point of the objective function. By utilizing perturbations on the update process, we show the almost sure convergence of the perturbed dynamics to a local minimum of the global objective function. Our analysis shows that this noised procedure converges at a rate of O(1/t)O(1/t)
    • …
    corecore