250 research outputs found

    Advanced Controls Of Cyber Physical Energy Systems

    Get PDF
    Cyber system is a fairly important component of the energy systems. The network imperfections can significantly reduce the control performance if not be properly treated together with the physical system during the control designs. In the proposed research, the advanced controls of cyber-physical energy systems are explored in depth. The focus of our research is on two typical energy systems including the large-scale smart grid (e.g. wide-area power system) and the smart microgrid (e.g. shipboard power system and inverter-interfaced AC/DC microgrid). In order to proactively reduce the computation and communication burden of the wide-area power systems (WAPSs), an event/self-triggered control method is developed. Besides, a reinforcement learning method is designed to counteract the unavoidable network imperfections of WAPSs such as communication delay and packet dropout with unknown system dynamics. For smart microgrids, various advanced control techniques, e.g., output constrained control, consensus-based control, neuro network and game theory etc., have been successfully applied to improve their physical performance. The proposed control algorithms have been tested through extensive simulations including the real-time simulation, the power-hardware-in-the-loop simulation and on the hardware testbed. Based on the existing work, further research of microgrids will be conducted to develop the improved control algorithms with cyber uncertainties

    Coordinated Control of Energy Storage in Networked Microgrids under Unpredicted Load Demands

    Full text link
    In this paper a nonlinear control design for power balancing in networked microgrids using energy storage devices is presented. Each microgrid is considered to be interfaced to the distribution feeder though a solid-state transformer (SST). The internal duty cycle based controllers of each SST ensures stable regulation of power commands during normal operation. But problem arises when a sudden change in load or generation occurs in any microgrid in a completely unpredicted way in between the time instants at which the SSTs receive their power setpoints. In such a case, the energy storage unit in that microgrid must produce or absorb the deficit power. The challenge lies in designing a suitable regulator for this purpose owing to the nonlinearity of the battery model and its coupling with the nonlinear SST dynamics. We design an input-output linearization based controller, and show that it guarantees closed-loop stability via a cascade connection with the SST model. The design is also extended to the case when multiple SSTs must coordinate their individual storage controllers to assist a given SST whose storage capacity is insufficient to serve the unpredicted load. The design is verified using the IEEE 34-bus distribution system with nine SST-driven microgrids.Comment: 8 pages, 10 figure

    Small signal modeling and analysis of microgrid systems

    Get PDF
    This dissertation focuses on small-signal modeling and analysis of inverter based microgrid systems. The proposed microgrid consists of two microsources placed on two different buses. The buses are connected using a distribution feeder with some impedance. The proposed microgrid can operate with the grid support, or without the grid support. When operated without the grid support, the standalone system’s microsources participate in controlling the system voltage and frequency. For a non-inertia source, such as the inverter, the load perturbations play an important role in system dynamics. In paper-I, such complex system was studied. In the grid-tied mode, the microsources share the load demand with other sources that are present in the main grid. The control algorithm for such system is much simpler than that of the islanded system. However, when aggregated in multi-bus system, prohibitively higher order state-space models are formed. In paper-II, a reduced order modeling of such systems was considered. Singular perturbation method was applied to identify the two time-scale property of the system. In paper-III, a similar approach was taken to develop a reduced order model of the islanded system that was developed in paper-I. Application of such reduced order models were illustrated by using them to simulate a modified IEEE-37 bus microgrid system. The islanded microgrids system’s stability is characterized in paper-IV by the Markov Jump Linear System Analysis. Conservative bounds on the expected value of the state were determined from a combination of the Markov process parameters, the dynamics of each linear system, and the magnitude of the impulses. The conclusions were verified with the simulation results. --Abstract, page iii

    Maximum current injection method for grid-forming inverters in an islanded microgrid subject to short circuits

    Get PDF
    In islanded microgrids, when a short circuit or a sudden overload occurs, it provokes an abrupt increment in the currents supplied by the generation nodes, which feed the load collaboratively. This is particularly challenging for inverter-based nodes, due to its reduced power capacity. This work takes advantage of the droop-method basic configuration to propose an additional closed-loop control, which ensures maximum current injection during any kind of short circuit maintaining the underlying droop control. Ensuring that any node injects its maximum rated current during the short circuit, it emulates the most common low-voltage ride-through protocols for grid-feeding sources oriented to support the grid and, in this way, the voltage unbalance is reduced. To develop the control proposal, a model of the faulted system is presented in order to evaluate the stability of the closed-loop system. A general modelling methodology is introduced in order to derive the control for any microgrid configuration. Finally, selected experimental results are reported in order to validate the effectiveness of the proposed control.Peer ReviewedPostprint (author's final draft

    Cyber Physical Energy Systems Modules for Power Sharing Controllers in Inverter Based Microgrids

    Get PDF
    The Microgrids (MGs) are an effective way to deal with the smart grid challenges, including service continuity in the event of a grid interruption, and renewable energy integration. The MGs are compounded by multiple distributed generators (DGs), and the main control goals are load demand sharing and voltage and frequency stability. Important research has been reported to cope with the implementation challenges of the MGs including the power sharing control problem, where the use of cybernetic components such as virtual components, and communication systems is a common characteristic. The use of these cybernetic components to control complex physical systems generates new modeling challenges in order to achieve an adequate balance between complexity and accuracy in the MG model. The standardization problem of the cyber-physical MG models is addressed in this work, using a cyber-physical energy systems (CPES) modeling methodology to build integrated modules, and define the communication architectures that each power sharing control strategy requires in an AC-MG. Based on these modules, the control designer can identify the signals and components that eventually require a time delay analysis, communication requirements evaluation, and cyber-attacks’ prevention strategies. Similarly, the modules of each strategy allow for analyzing the potential advantages and drawbacks of each power sharing control technique from a cyber physical perspective

    TOWARDS OPTIMAL OPERATION AND CONTROL OF EMERGING ELECTRIC DISTRIBUTION NETWORKS

    Get PDF
    The growing integration of power-electronics converters enabled components causes low inertia in the evolving electric distribution networks, which also suffer from uncertainties due to renewable energy sources, electric demands, and anomalies caused by physical or cyber attacks, etc. These issues are addressed in this dissertation. First, a virtual synchronous generator (VSG) solution is provided for solar photovoltaics (PVs) to address the issues of low inertia and system uncertainties. Furthermore, for a campus AC microgrid, coordinated control of the PV-VSG and a combined heat and power (CHP) unit is proposed and validated. Second, for islanded AC microgrids composed of SGs and PVs, an improved three-layer predictive hierarchical power management framework is presented to provide economic operation and cyber-physical security while reducing uncertainties. This scheme providessuperior frequency regulation capability and maintains low system operating costs. Third, a decentralized strategy for coordinating adaptive controls of PVs and battery energy storage systems (BESSs) in islanded DC nanogrids is presented. Finally, for transient stability evaluation (TSE) of emerging electric distribution networks dominated by EV supercharging stations, a data-driven region of attraction (ROA) estimation approach is presented. The proposed data-driven method is more computationally efficient than traditional model-based methods, and it also allows for real-time ROA estimation for emerging electric distribution networks with complex dynamics

    Power-Based Droop Control in DC Microgrids Enabling Seamless Disconnection From Upstream Grids

    Get PDF
    This paper proposes a local power-based droop controller for distributed energy resource converters in dc microgrids that are connected to upstream grids by grid-interface converters. During normal operation, the grid-interface converter imposes the microgrid bus voltage, and the proposed controller allows power flow regulation at distributed energy resource converters\u2019 output. On the other hand, during abnormal operation of the grid-interface converter (e.g., due to faults in the upstream grid), the proposed controller allows bus voltage regulation by droop control. Notably, the controller can autonomously convert from power flow control to droop control, without any need of bus voltage variation detection schemes or communication with other microgrid components, which enables seamless transitions between these two modes of operation. Considering distributed energy resource converters employing the power-based droop control, the operation modes of a single converter and of the whole microgrid are defined and investigated herein. The controller design is also introduced. Furthermore, the power sharing performance of this control approach is analyzed and compared with that of classical droop control. The experimental results from a laboratory-scale dc microgrid prototype are reported to show the final performances of the proposed power-based droop control

    Bounded droop controller for parallel operation of inverters

    Get PDF
    In this paper, the stability of parallel-operated inverters in the sense of boundedness is investigated. At first, the non-linear model of parallelled inverters with a generic linear or non-linear load is obtained by using the generalised dissipative Hamiltonian structure and then the robust droop controller, recently proposed in the literature for parallel operation of inverters, is implemented in a way to produce a bounded control output. The proposed controller is called the bounded droop controller (BDC). It introduces a zero-gain property and can guarantee the boundedness of the closed-loop system solution. Therefore, for the first time, the closed-loop stability in the sense of boundedness is guaranteed for parallelled inverters feeding generic non-linear/linear loads. The controller structure is further improved to increase its robustness with respect to initial conditions, numerical errors or external disturbances while maintaining the stability property. Moreover, the controller is tuned to avoid any possible limit cycles in the voltage dynamics. Real-time simulation results for two single-phase inverters operated in parallel loaded with a non-linear load are presented to verify the effectiveness of the proposed BDC
    • …
    corecore