6,753 research outputs found

    A Review of Interference Reduction in Wireless Networks Using Graph Coloring Methods

    Full text link
    The interference imposes a significant negative impact on the performance of wireless networks. With the continuous deployment of larger and more sophisticated wireless networks, reducing interference in such networks is quickly being focused upon as a problem in today's world. In this paper we analyze the interference reduction problem from a graph theoretical viewpoint. A graph coloring methods are exploited to model the interference reduction problem. However, additional constraints to graph coloring scenarios that account for various networking conditions result in additional complexity to standard graph coloring. This paper reviews a variety of algorithmic solutions for specific network topologies.Comment: 10 pages, 5 figure

    The Cost of Global Broadcast in Dynamic Radio Networks

    Get PDF
    We study the single-message broadcast problem in dynamic radio networks. We show that the time complexity of the problem depends on the amount of stability and connectivity of the dynamic network topology and on the adaptiveness of the adversary providing the dynamic topology. More formally, we model communication using the standard graph-based radio network model. To model the dynamic network, we use a generalization of the synchronous dynamic graph model introduced in [Kuhn et al., STOC 2010]. For integer parameters T≄1T\geq 1 and k≄1k\geq 1, we call a dynamic graph TT-interval kk-connected if for every interval of TT consecutive rounds, there exists a kk-vertex-connected stable subgraph. Further, for an integer parameter τ≄0\tau\geq 0, we say that the adversary providing the dynamic network is τ\tau-oblivious if for constructing the graph of some round tt, the adversary has access to all the randomness (and states) of the algorithm up to round t−τt-\tau. As our main result, we show that for any T≄1T\geq 1, any k≄1k\geq 1, and any τ≄1\tau\geq 1, for a τ\tau-oblivious adversary, there is a distributed algorithm to broadcast a single message in time O((1+nk⋅min⁥{τ,T})⋅nlog⁥3n)O\big(\big(1+\frac{n}{k\cdot\min\left\{\tau,T\right\}}\big)\cdot n\log^3 n\big). We further show that even for large interval kk-connectivity, efficient broadcast is not possible for the usual adaptive adversaries. For a 11-oblivious adversary, we show that even for any T≀(n/k)1−ΔT\leq (n/k)^{1-\varepsilon} (for any constant Δ>0\varepsilon>0) and for any k≄1k\geq 1, global broadcast in TT-interval kk-connected networks requires at least Ω(n2/(k2log⁥n))\Omega(n^2/(k^2\log n)) time. Further, for a 00 oblivious adversary, broadcast cannot be solved in TT-interval kk-connected networks as long as T<n−kT<n-k.Comment: 17 pages, conference version appeared in OPODIS 201

    Securing personal distributed environments

    Get PDF
    The Personal Distributed Environment (PDE) is a new concept being developed by Mobile VCE allowing future mobile users flexible access to their information and services. Unlike traditional mobile communications, the PDE user no longer needs to establish his or her personal communication link solely through one subscribing network but rather a diversity of disparate devices and access technologies whenever and wherever he or she requires. Depending on the services’ availability and coverage in the location, the PDE communication configuration could be, for instance, via a mobile radio system and a wireless ad hoc network or a digital broadcast system and a fixed telephone network. This new form of communication configuration inherently imposes newer and higher security challenges relating to identity and authorising issues especially when the number of involved entities, accessible network nodes and service providers, builds up. These also include the issue of how the subscribed service and the user’s personal information can be securely and seamlessly handed over via multiple networks, all of which can be changing dynamically. Without such security, users and operators will not be prepared to trust their information to other networks

    HoPP: Robust and Resilient Publish-Subscribe for an Information-Centric Internet of Things

    Full text link
    This paper revisits NDN deployment in the IoT with a special focus on the interaction of sensors and actuators. Such scenarios require high responsiveness and limited control state at the constrained nodes. We argue that the NDN request-response pattern which prevents data push is vital for IoT networks. We contribute HoP-and-Pull (HoPP), a robust publish-subscribe scheme for typical IoT scenarios that targets IoT networks consisting of hundreds of resource constrained devices at intermittent connectivity. Our approach limits the FIB tables to a minimum and naturally supports mobility, temporary network partitioning, data aggregation and near real-time reactivity. We experimentally evaluate the protocol in a real-world deployment using the IoT-Lab testbed with varying numbers of constrained devices, each wirelessly interconnected via IEEE 802.15.4 LowPANs. Implementations are built on CCN-lite with RIOT and support experiments using various single- and multi-hop scenarios
    • 

    corecore