312 research outputs found

    Analysis of the effect of clock drifts on frequency regulation and power sharing in inverter-based islanded microgrids

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Local hardware clocks in physically distributed computation devices hardly ever agree because clocks drift apart and the drift can be different for each device. This paper analyses the effect that local clock drifts have in the parallel operation of voltage source inverters (VSIs) in islanded microgrids (MG). The state-of-the-art control policies for frequency regulation and active power sharing in VSIs-based MGs are reviewed and selected prototype policies are then re-formulated in terms of clock drifts. Next, steady-state properties for these policies are analyzed. For each of the policies, analytical expressions are developed to provide an exact quantification of the impact that drifts have on frequency and active power equilibrium points. In addition, a closed-loop model that accommodates all the policies is derived, and the stability of the equilibrium points is characterized in terms of the clock drifts. Finally, the implementation of the analyzed policies in a laboratory MG provides experimental results that confirm the theoretical analysis.Peer ReviewedPostprint (author's final draft

    On the Impact of Wireless Jamming on the Distributed Secondary Microgrid Control

    Full text link
    The secondary control in direct current microgrids (MGs) is used to restore the voltage deviations caused by the primary droop control, where the latter is implemented locally in each distributed generator and reacts to load variations. Numerous recent works propose to implement the secondary control in a distributed fashion, relying on a communication system to achieve consensus among MG units. This paper shows that, if the system is not designed to cope with adversary communication impairments, then a malicious attacker can apply a simple jamming of a few units of the MG and thus compromise the secondary MG control. Compared to other denial-of-service attacks that are oriented against the tertiary control, such as economic dispatch, the attack on the secondary control presented here can be more severe, as it disrupts the basic functionality of the MG

    Coordinated Control of Distributed Energy Resources in Islanded Microgrids

    Get PDF
    As the penetration of the distributed energy resources (DERs) in the power grid increases,new challenges are revealed, including: stability issues, frequency fluctuations, voltage control, protection system coordination, etc. A systematic approach for dealing with those issues is to view the DERs and associated loads as a subsystem or a microgrid (MG). MGs can operate either in the grid connected or islanded modes. As opposed to the grid connected mode, the voltage and frequency regulation and load/generation balancing during islanded mode is solely dependent on the local generation units. Therefore, stable and reliable operation of islanded MGs requires a real time coordinated control scheme. Conventionally, such coordination is achieved by means of the active power-frequency and reactive powervoltage droop control schemes. The conventional droop method, which is based on P-f droop concept in power systems, lacks compatibility with the resistive nature of networks as well as the low inertia of electronically interfaced DER units in MGs. As a result, it features a slow dynamic response but also a low power quality due to frequency and voltage fluctuations. This PhD research proposes a novel droop concept based on the global positioning system (GPS) and voltage-current (V-I) droop characteristics for coordination of inverter-based DER units in islanded MGs. The concept of V-I droop control is introduced in Chapter 2. In this control approach, each DER is equipped with a GPS receiver, which produces a pulse at frequency of 1Hz (1PPS). Since all GPS receivers are locked to atomic clocks of the GPS satellites, the 1PPS signal can be utilized to synchronize the time reference of the DER units. Using the common time reference and fixing the frequency at the nominal value, all of the units can share a common synchronous rotating reference frame (SRRF). Furthermore, proportional load sharing is achieved by drooping the d and q axis components of the reference voltage with respect to the d and q axis components of current, respectively. The proposed scheme not only circumvents the issue of frequency fluctuations but also is in accordance with the fast dynamics of inverter-based DER units and resistive nature of the networks in islanded MGs. The V-I droop scheme, in its basic form, relies on availability of GPS signals at each of the DER units. With the intention of improving the MG robustness with respect to GPS signal failure, a new control strategy based on V-I droop concept is presented Chapter 3. In this method, an adaptive reactive power-frequency droop scheme is used as a backup for the V-I droop controller to ensure synchronization in case of a GPS signal failure. Droop control schemes in general, and the proposed V-I droop strategy in particular are characterized by non-ideal sharing of current among the DER units due to the variations of voltage along the MGs. In order to improve the sharing accuracy of the V-I droop scheme iv while regulating the average voltage at the nominal value, a new distributed secondary control method based on consensus protocol is proposed in Chapter 4. In this method, the daxis droop characteristics is altered so as to regulate the average microgrid voltage to the rated value but also guarantee proper sharing of active power among the DERs. Additionally, the q-axis component of voltage is adjusted to perform proper sharing of current. Generally, DERs might be supplied from different energy sources, including renewables and storage systems. The intermittency of renewable energy resources on one hand and the limited capacity of the energy storage systems on the other hand, necessitate modification of droop characteristics based on an energy management plan. In Chapter 5, a novel distributed secondary control strategy is introduced for power management of integrated photovoltaicbattery DER units in islanded MGs. The distributed secondary controllers are coordinated based on a leader-follower framework, where the leader restores the MG voltage to the rated value and the followers pursue energy management. Unbalanced and nonlinear loads, which are quite common in MGs, adversely affect the power quality and sharing accuracy. In order to mitigate those issues, two new solutions are proposed in this thesis. In the first approach (Chapter 6), a new supplementary droop control scheme is added to the V-I droop controller to reduce the voltage unbalance while preventing current and power overload under unbalanced loading conditions. In the second approach (Chapter 7), a hierarchical control scheme, consisting of primary (modified V-I droop) and distributed secondary control levels is introduced to mitigate harmonic distortions and prevent overcurrent stresses under nonlinear and unbalanced loading conditions. Finally, the conclusions and possible future work are addressed in Chapter 8

    Reliability Improvement of Autonomous Microgrids through Interconnection and Storage

    Get PDF
    This thesis deals with reliability and power quality improvement in autonomous microgrids. The reliability is improved through the interconnection of storage, intertying two neighbouring microgrids and interlinking of microgrids cluster through a common power exchange highway. The power quality is improved by interconnecting distributed static compensator (DSTATCOM) in the microgrid. All the proposed methods are verified through extensive digital computer simulation using PSCAD

    Design And Implementation Of Co-Operative Control Strategy For Hybrid AC/DC Microgrids

    Get PDF
    This thesis is mainly divided in two major sections: 1) Modelling and control of AC microgrid, DC microgrid, Hybrid AC/DC microgrid using distributed co-operative control, and 2) Development of a four bus laboratory prototype of an AC microgrid system. At first, a distributed cooperative control (DCC) for a DC microgrid considering the state-of-charge (SoC) of the batteries in a typical plug-in-electric-vehicle (PEV) is developed. In DC microgrids, this methodology is developed to assist the load sharing amongst the distributed generation units (DGs), according to their ratings with improved voltage regulation. Subsequently, a DCC based control algorithm for AC microgrid is also investigated to improve the performance of AC microgrid in terms of power sharing among the DGs, voltage regulation and frequency deviation. The results validate the advantages of the proposed methodology as compared to traditional droop control of AC microgrid. The DCC-based control methodology for AC microgrid and DC microgrid are further expanded to develop a DCC-based power management algorithm for hybrid AC/DC microgrid. The developed algorithm for hybrid microgrid controls the power flow through the interfacing converter (IC) between the AC and DC microgrids. This will facilitate the power sharing between the DGs according to their power ratings. Moreover, it enables the fixed scheduled power delivery at different operating conditions, while maintaining good voltage regulation and improved frequency profile. The second section provides a detailed explanation and step-by-step design and development of an AC/DC microgrid testbed. Controllers for the three-phase inverters are designed and tested on different generation units along with their corresponding inductor-capacitor-inductor (LCL) filters to eliminate the switching frequency harmonics. Electric power distribution line models are developed to form the microgrid network topology. Voltage and current sensors are placed in the proper positions to achieve a full visibility over the microgrid. A running average filter (RAF) based enhanced phase-locked-loop (EPLL) is designed and implemented to extract frequency and phase angle information. A PLL-based synchronizing scheme is also developed to synchronize the DGs to the microgrid. The developed laboratory prototype runs on dSpace platform for real time data acquisition, communication and controller implementation

    Single-phase microgrid with seamless transition capabilities between modes of operation

    Get PDF
    Microgrids are an effective way to increase the penetration of DG into the grid. They are capable of operating either in grid-connected or in islanded mode thereby increasing the supply reliability for the end user. This paper focuses on achieving seamless transitions from islanded to grid-connected and vice versa for a single phase microgrid made up from voltage controlled voltage source inverters (VC-VSIs) and current controlled voltage source inverters (CC-VSIs) working together in both modes of operation. The primary control structures for the VC-VSIs and CC-VSIs is considered together with the secondary control loops that are used to synchronize the microgrid as a single unit to the grid. Simulation results are given that show the seamless transitions between the two modes without any disconnection times for the CC-VSIs and VC-VSIs connected to the microgrid.peer-reviewe

    Advanced Control Architectures for Intelligent MicroGrids, Part I:Decentralized and Hierarchical Control

    Get PDF
    This paper presents a review of advanced control techniques for microgrids. This paper covers decentralized, distributed, and hierarchical control of grid-connected and islanded microgrids. At first, decentralized control techniques for microgrids are reviewed. Then, the recent developments in the stability analysis of decentralized controlled microgrids are discussed. Finally, hierarchical control for microgrids that mimic the behavior of the mains grid is reviewed

    Identification and development of microgrids emergency control procedures

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Consensus Based Control Strategy for Virtual Synchronous Generators in Microgrids

    Get PDF
    Renewable energy sources such as photo-voltaic and wind energy are integrating very rapidly in power systems. These energy-based systems typically adopt power-electronic interfaced inverters to connect to the grid. However, unlike traditional generators, these sources have low inertia, resulting in system stability issues, especially in microgrids where they are the primary sources. To mitigate the low-inertia effect, the inverters are modeled as virtual synchronous generators (VSG), and their control is designed. The VSG emulates the inertia effect of the synchronous generator and maintains the stability of the system. Even though the droop control provides the primary control, it is insufficient due to the high variability of the power electronics in inverter systems. Hence, optimal and efficient power-sharing among distributed generators (DGs) is needed through secondary control. The consensus-based algorithm is proposed in this thesis to overcome the control challenges of inverters in a microgrid to obtain control under fast-changing system conditions and unbalanced scenarios. The developed controller is tested on microgrid systems through simulations in MATLAB/Simulink, and the performance is compared with other controllers and with just the primary controller
    corecore