4,745 research outputs found

    Modeling views in the layered view model for XML using UML

    Get PDF
    In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction

    A Methodology for Engineering Collaborative and ad-hoc Mobile Applications using SyD Middleware

    Get PDF
    Today’s web applications are more collaborative and utilize standard and ubiquitous Internet protocols. We have earlier developed System on Mobile Devices (SyD) middleware to rapidly develop and deploy collaborative applications over heterogeneous and possibly mobile devices hosting web objects. In this paper, we present the software engineering methodology for developing SyD-enabled web applications and illustrate it through a case study on two representative applications: (i) a calendar of meeting application, which is a collaborative application and (ii) a travel application which is an ad-hoc collaborative application. SyD-enabled web objects allow us to create a collaborative application rapidly with limited coding effort. In this case study, the modular software architecture allowed us to hide the inherent heterogeneity among devices, data stores, and networks by presenting a uniform and persistent object view of mobile objects interacting through XML/SOAP requests and responses. The performance results we obtained show that the application scales well as we increase the group size and adapts well within the constraints of mobile devices

    Detecting Functional Requirements Inconsistencies within Multi-teams Projects Framed into a Model-based Web Methodology

    Get PDF
    One of the most essential processes within the software project life cycle is the REP (Requirements Engineering Process) because it allows specifying the software product requirements. This specification should be as consistent as possible because it allows estimating in a suitable manner the effort required to obtain the final product. REP is complex in itself, but this complexity is greatly increased in big, distributed and heterogeneous projects with multiple analyst teams and high integration between functional modules. This paper presents an approach for the systematic conciliation of functional requirements in big projects dealing with a web model-based approach and how this approach may be implemented in the context of the NDT (Navigational Development Techniques): a web methodology. This paper also describes the empirical evaluation in the CALIPSOneo project by analyzing the improvements obtained with our approach.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-RMinisterio de Economía y Competitividad TIN2015-71938-RED

    Una arquitectura de referencia para ambientes web de ingeniería ontológica

    Get PDF
    Ontology authoring, maintenance and use are never easy tasks, mostly due to the complexity of real domains and how they dynamically change as well as different background possessed by modellers about methodologies and formal languages. However, although the needs for ontologies are well-understood, not less important is to provide editing tools to manipulate and understand them. In this context, this work proposes and documents a reference architecture for such tools running in web environments. Moreover, it provides the rationale for boosting the collaborative development of a novel tool based on this architecture, named crowd. Previous surveys reveal that few Webbased ontology engineering environments have been developed and in addition, almost all of them are mere visualisers, with limited graphical features and lacking inference services.La definición, mantenimiento y use de ontologías son tareas difíciles debido, en mayor medida, a la complejidad inherente al mundo real y a como éste cambia dinámicamente. Asimismo, también se debe a las diferencias en conocimiento sobre metodologías y lenguajes formales por parte de los modeladores. Sin embargo, aunque la necesidad de crear y obtener ontologías es clave, es también importante contar con herramientas para manipularlas y entenderlas. Este trabajo propone y documenta una arquitectura de referencia para ambientes Web y ofrece los fundamentos para impulsar el desarrollo colaborativo de la herramienta crowd, la cual esta basada sobre dicha architectura. Revisiones previas de la literatura indican la existencia de un numero reducido ambientes para la Ingeniería Ontológica basados en tecnologías Web, sin embargo, casi en su totalidad son solo visualizadores de modelos con soporte gráfico limitado y ausencia de razonamiento lógico integrado.Facultad de Informátic

    Engineering XML solutions using views

    Get PDF
    In industrial informatics, engineering data intensive Enterprise Information Systems (EIS) is a challenging task without abstraction and partitioning. Further, the introduction of semi-structured data (namely XML) and its rapid adaptation by the commercial and industrial systems increased the complexity for data engineering. Conversely, the introduction of OMG's MDA presents an interesting paradigm for EIS and system modelling, where a system is designed at a higher level of abstraction. This presents an interesting problem to investigate data engineering XML solutions under the MDA initiatives, where, models and framework requires higher level of abstraction. In this paper we investigate a view model that can provide layered design methodology for modelling data intensive XML solutions for EIS paradigm, with sufficient level of abstraction

    Modeling ontology views: An abstract view model for semantic web

    Get PDF
    The emergence of Semantic Web (SW) and the related technologies promise to make the web a meaningful experience. However, high level modelling, design and querying techniques proves to be a challenging task for organizations that are hoping to utilize the SW paradigm for their industrial applications. To address one such issue, in this paper, we propose an abstract view model with conceptual extensions for the SW. First we outline the view model, its properties and some modelling issues with the help of an industrial case study example. Then, we provide some discussions on constructing such views (at the conceptual level) using a set of operators. Later we provide a brief discussion on how such this view model can utilized in the MOVE [1] system, to design and construct materialized Ontology views to support Ontology extraction
    corecore