284 research outputs found

    Cooperative control of autonomous connected vehicles from a Networked Control perspective: Theory and experimental validation

    Get PDF
    Formation control of autonomous connected vehicles is one of the typical problems addressed in the general context of networked control systems. By leveraging this paradigm, a platoon composed by multiple connected and automated vehicles is represented as one-dimensional network of dynamical agents, in which each agent only uses its neighboring information to locally control its motion, while it aims to achieve certain global coordination with all other agents. Within this theoretical framework, control algorithms are traditionally designed based on an implicit assumption of unlimited bandwidth and perfect communication environments. However, in practice, wireless communication networks, enabling the cooperative driving applications, introduce unavoidable communication impairments such as transmission delay and packet losses that strongly affect the performances of cooperative driving. Moreover, in addition to this problem, wireless communication networks can suffer different security threats. The challenge in the control field is hence to design cooperative control algorithms that are robust to communication impairments and resilient to cyber attacks. The work aim is to tackle and solve these challenges by proposing different properly designed control strategies. They are validated both in analytical, numerical and experimental ways. Obtained results confirm the effectiveness of the strategies in coping with communication impairments and security vulnerabilities

    Distributed H∞ Controller Design and Robustness Analysis for Vehicle Platooning Under Random Packet Drop

    Get PDF
    This paper presents the design of a robust distributed state-feedback controller in the discrete-time domain for homogeneous vehicle platoons with undirected topologies, whose dynamics are subjected to external disturbances and under random single packet drop scenario. A linear matrix inequality (LMI) approach is used for devising the control gains such that a bounded H∞ norm is guaranteed. Furthermore, a lower bound of the robustness measure, denoted as γ gain, is derived analytically for two platoon communication topologies, i.e., the bidirectional predecessor following (BPF) and the bidirectional predecessor leader following (BPLF). It is shown that the γ gain is highly affected by the communication topology and drastically reduces when the information of the leader is sent to all followers. Finally, numerical results demonstrate the ability of the proposed methodology to impose the platoon control objective for the BPF and BPLF topology under random single packet drop

    Formation Control for a Fleet of Autonomous Ground Vehicles: A Survey

    Get PDF
    Autonomous/unmanned driving is the major state-of-the-art step that has a potential to fundamentally transform the mobility of individuals and goods. At present, most of the developments target standalone autonomous vehicles, which can sense the surroundings and control the vehicle based on this perception, with limited or no driver intervention. This paper focuses on the next step in autonomous vehicle research, which is the collaboration between autonomous vehicles, mainly vehicle formation control or vehicle platooning. To gain a deeper understanding in this area, a large number of the existing published papers have been reviewed systemically. In other words, many distributed and decentralized approaches of vehicle formation control are studied and their implementations are discussed. Finally, both technical and implementation challenges for formation control are summarized
    corecore