1,084 research outputs found

    HVAC-based hierarchical energy management system for microgrids

    Get PDF
    With the high penetration of renewable energy into the grid, power fluctuations and supply-demand power mismatch are becoming more prominent, which pose a great challenge for the power system to eliminate negative effects through demand side management (DSM). The flexible load, such as heating, ventilation, air conditioning (HVAC) system, has a great potential to provide demand response services in the electricity grids. In this thesis, a comprehensive framework based on a forecasting-management optimization approach is proposed to coordinate multiple HVAC systems to deal with uncertainties from renewable energy resources and maximize the energy efficiency. In the forecasting stage, a hybrid model based on Multiple Aggregation Prediction Algorithm with exogenous variables (MAPAx)-Principal Components Analysis (PCA) is proposed to predict changes of local solar radiance, vy using the local observation dataset and real-time meteorological indexes acquired from the weather forecast spot. The forecast result is then compared with the statistical benchmark models and assessed by performance evaluation indexes. In the management stage, a novel distributed algorithm is developed to coordinate power consumption of HVAC systems by varying the compressors’ frequency to maintain the supply-demand balance. It demonstrates that the cost and capacity of energy storage systems can be curtailed, since HVACs can absorb excessive power generation. More importantly, the method addresses a consensus problem under a switching communication topology by using Lyapunov argument, which relaxes the communication requirement. In the optimization stage, a price-comfort optimization model regarding HVAC’s end users is formulated and a proportional-integral-derivative (PID)-based distributed algorithm is thus developed to minimize the customer’s total cost, whilst alleviating the global power imbalance. The end users are motivated to participate in energy trade through DSM scheme. Furthermore, the coordination scheme can be extended to accommodate battery energy storage systems (BESSs) and a hybrid BESS-HVAC system with increasing storage capacity is proved as a promising solution to enhance its selfregulation ability in a microgrid. Extensive case studies have been undertaken with the respective control strategies to investigate effectiveness of the algorithms under various scenarios. The techniques developed in this thesis has helped the partnership company of this project to develop their smart immersion heaters for the customers with minimum energy cost and maximum photovoltaic efficiency

    MAS-based Distributed Coordinated Control and Optimization in Microgrid and Microgrid Clusters:A Comprehensive Overview

    Get PDF

    Wide-Area Time-Synchronized Closed-Loop Control of Power Systems And Decentralized Active Distribution Networks

    Get PDF
    The rapidly expanding power system grid infrastructure and the need to reduce the occurrence of major blackouts and prevention or hardening of systems against cyber-attacks, have led to increased interest in the improved resilience of the electrical grid. Distributed and decentralized control have been widely applied to computer science research. However, for power system applications, the real-time application of decentralized and distributed control algorithms introduce several challenges. In this dissertation, new algorithms and methods for decentralized control, protection and energy management of Wide Area Monitoring, Protection and Control (WAMPAC) and the Active Distribution Network (ADN) are developed to improve the resiliency of the power system. To evaluate the findings of this dissertation, a laboratory-scale integrated Wide WAMPAC and ADN control platform was designed and implemented. The developed platform consists of phasor measurement units (PMU), intelligent electronic devices (IED) and programmable logic controllers (PLC). On top of the designed hardware control platform, a multi-agent cyber-physical interoperability viii framework was developed for real-time verification of the developed decentralized and distributed algorithms using local wireless and Internet-based cloud communication. A novel real-time multiagent system interoperability testbed was developed to enable utility independent private microgrids standardized interoperability framework and define behavioral models for expandability and plug-and-play operation. The state-of-theart power system multiagent framework is improved by providing specific attributes and a deliberative behavior modeling capability. The proposed multi-agent framework is validated in a laboratory based testbed involving developed intelligent electronic device prototypes and actual microgrid setups. Experimental results are demonstrated for both decentralized and distributed control approaches. A new adaptive real-time protection and remedial action scheme (RAS) method using agent-based distributed communication was developed for autonomous hybrid AC/DC microgrids to increase resiliency and continuous operability after fault conditions. Unlike the conventional consecutive time delay-based overcurrent protection schemes, the developed technique defines a selectivity mechanism considering the RAS of the microgrid after fault instant based on feeder characteristics and the location of the IEDs. The experimental results showed a significant improvement in terms of resiliency of microgrids through protection using agent-based distributed communication

    HVAC-based cooperative algorithms for demand side management in a microgrid

    Get PDF
    The high penetration of renewable power generators and various loads have brought a great challenge for dispatching energy in a microgrid system. Heating ventilation air conditioning (HVAC) system, as a household appliance with high popularity, can be considered as an effective technology to alleviate energy dispatch issues. This paper presents novel distributed algorithms based on HVAC to solve the demand side management problem, where the microgrid system with HVAC units is considered as a multi-agent system (MAS). The approach provides a desirable operating frequency signal for each HVAC based on the power mismatch value occurring on each local bus. It utilizes demand response of the HVAC units to minimize the supply-demand mismatch, thus reducing the quantity and capacity of energy storage devices potentially to be required. Compared with existing approaches focusing on the distributed algorithms under a fixed communication network, this paper addresses a consensus problem under a switching topology by using the Lyapunov argument. It is verified that a jointly strong and connected topology is a sufficient condition in order to achieve an average consensus for a time-varying topology. A number of cases are studied to evaluate the effectiveness of the algorithms by taking into account its power constraints, dynamic behaviors, anti-damage characteristics and time-varying communication topology. Modelling these system interactions has demonstrated the feasibility of the proposed microgrid system

    A Study on the Hierarchical Control Structure of the Islanded Microgrid

    Get PDF
    The microgrid is essential in promoting the power system’s resilience through its ability to host small-scale DG units. Furthermore, the microgrid can isolate itself during main grid faults and supply its demands. However, islanded operation of the microgrid is challenging due to difficulties in frequency and voltage control. In islanded mode, grid-forming units collaborate to control the frequency and voltage. A hierarchical control structure employing the droop control technique provides these control objectives in three consecutive levels: primary, secondary, and tertiary. However, challenges associated with DG units in the vicinity of distribution networks limit the effectiveness of the islanded mode of operation.In MV and LV distribution networks, the X/R ratio is low; hence, the frequency and voltage are related to the active and reactive power by line parameters. Therefore, frequency and voltage must be tuned for changes in active or reactive powers. Furthermore, the line parameters mismatch causes the voltage to be measured differently at each bus due to the different voltage drops in the lines. Hence, a trade-off between voltage regulation and reactive power-sharing is formed, which causes either circulating currents for voltage mismatch or overloading for reactive power mismatch. Finally, the economic dispatch is usually implemented in tertiary control, which takes minutes to hours. Therefore, an estimation algorithm is required for load and renewable energy quantities forecasting. Hence, prediction errors may occur that affect the stability and optimality of the control. This dissertation aims to improve the power system resilience by enhancing the operation of the islanded microgrid by addressing the above-mentioned issues. Firstly, a linear relationship described by line parameters is used in droop control at the primary control level to accurately control the frequency and voltage based on measured active and reactive power. Secondly, an optimization-based consensus secondary control is presented to manage the trade-off between voltage regulation and reactive power-sharing in the inductive grid with high line parameters mismatch. Thirdly, the economic dispatch-based secondary controller is implemented in secondary control to avoid prediction errors by depending on the measured active and reactive powers rather than the load and renewable energy generation estimation. The developed methods effectively resolve the frequency and voltage control issues in MATLAB/SIMULINK simulations

    Multi-objective optimal dispatch of distributed energy resources

    Get PDF
    This thesis is composed of two papers which investigate the optimal dispatch for distributed energy resources. In the first paper, an economic dispatch problem for a community microgrid is studied. In this microgrid, each agent pursues an economic dispatch for its personal resources. In addition, each agent is capable of trading electricity with other agents through a local energy market. In this paper, a simple market structure is introduced as a framework for energy trades in a small community microgrid such as the Solar Village. It was found that both sellers and buyers benefited by participating in this market. In the second paper, Semidefinite Programming (SDP) for convex relaxation of power flow equations is used for optimal active and reactive dispatch for Distributed Energy Resources (DER). Various objective functions including voltage regulation, reduced transmission line power losses, and minimized reactive power charges for a microgrid are introduced. Combinations of these goals are attained by solving a multiobjective optimization for the proposed ORPD problem. Also, both centralized and distributed versions of this optimal dispatch are investigated. It was found that SDP made the optimal dispatch faster and distributed solution allowed for scalability --Abstract, page iv
    • …
    corecore