103,305 research outputs found

    Distributed Connectivity Control of Mobile Networks

    Get PDF
    Control of mobile networks raises fundamental and novel problems in controlling the structure of the resulting dynamic graphs. In particular, in applications involving mobile sensor networks and multiagent systems, a great new challenge is the development of distributed motion algorithms that guarantee connectivity of the overall network. Motivated by the inherently discrete nature of graphs as combinatorial objects, we address this challenge using a key control decomposition. First, connectivity control of the network structure is performed in the discrete space of graphs and relies on local estimates of the network topology used, along with algebraic graph theory, to verify link deletions with respect to connectivity. Tie breaking, when multiple such link deletions can violate connectivity, is achieved by means of gossip algorithms and distributed market-based control. Second, motion control is performed in the continuous configuration space, where nearest-neighbor potential fields are used to maintain existing links in the network. Integration of the earlier controllers results in a distributed, multiagent, hybrid system, for which we show that the resulting motion always ensures connectivity of the network, while it reconfigures toward certain secondary objectives. Our approach can also account for communication time delays as well as collision avoidance and is illustrated in nontrivial computer simulations

    Distributed Connectivity Control of Mobile Networks

    Full text link

    Evolving Gene Regulatory Networks with Mobile DNA Mechanisms

    Full text link
    This paper uses a recently presented abstract, tuneable Boolean regulatory network model extended to consider aspects of mobile DNA, such as transposons. The significant role of mobile DNA in the evolution of natural systems is becoming increasingly clear. This paper shows how dynamically controlling network node connectivity and function via transposon-inspired mechanisms can be selected for in computational intelligence tasks to give improved performance. The designs of dynamical networks intended for implementation within the slime mould Physarum polycephalum and for the distributed control of a smart surface are considered.Comment: 7 pages, 8 figures. arXiv admin note: substantial text overlap with arXiv:1303.722

    Efficient Information Aggregation Strategies for Distributed Control and Signal Processing

    Get PDF
    This thesis is concerned with distributed control and coordination of networks consisting of multiple, potentially mobile, agents. This is motivated mainly by the emergence of large scale networks characterized by the lack of centralized access to information and time-varying connectivity. Control and optimization algorithms deployed in such networks should be completely distributed, relying only on local observations and information, and robust against unexpected changes in topology such as link failures. We will describe protocols to solve certain control and signal processing problems in this setting. We will demonstrate that a key challenge for such systems is the problem of computing averages in a decentralized way. Namely, we will show that a number of distributed control and signal processing problems can be solved straightforwardly if solutions to the averaging problem are available. The rest of the thesis will be concerned with algorithms for the averaging problem and its generalizations. We will (i) derive the fastest known averaging algorithms in a variety of settings and subject to a variety of communication and storage constraints (ii) prove a lower bound identifying a fundamental barrier for averaging algorithms (iii) propose a new model for distributed function computation which reflects the constraints facing many large-scale networks, and nearly characterize the general class of functions which can be computed in this model.Comment: Ph.D. thesis, Department of Electrical Engineering and Computer Science, MIT, September 201

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    A Fuzzy Based Distributed Algorithm for Maintaining Connected Network Topology in Mobile Ad-Hoc Networks Considering Freeway Mobility Model

    Get PDF
    Mobile Ad-Hoc Networks (MANETs) present real-time embedded system that is being used in a wide variety of applications where traditional networking infrastructure is practically infeasible. The highly dynamic character of a Mobile Ad-Hoc Network (MANET) poses significant challenges on network communications. Previous work on MANET has resulted in numerous routing protocols aiming to maintain network connectivity among the active nodes. This paper presents a fuzzy-based distributed algorithm to maintain connected MANET considering freeway mobility model. According to the algorithm, each node will control itself in a way that it can maintain its connectivity with other nodes. In this approach each node is enabled with a Global Positioning System (GPS) receiver. Through GPS each and every node is getting its position and velocity. After getting the information all the nodes in a network transmit their position and velocity information periodically. Obtaining information from all other nodes, each node will decide its own velocity to maintain connectivity. Moreover, faults to a particular node have also been considered in this algorithm. Results obtained through simulation studies show the effectiveness of the proposed algorithm

    Research on Wireless Multi-hop Networks: Current State and Challenges

    Full text link
    Wireless multi-hop networks, in various forms and under various names, are being increasingly used in military and civilian applications. Studying connectivity and capacity of these networks is an important problem. The scaling behavior of connectivity and capacity when the network becomes sufficiently large is of particular interest. In this position paper, we briefly overview recent development and discuss research challenges and opportunities in the area, with a focus on the network connectivity.Comment: invited position paper to International Conference on Computing, Networking and Communications, Hawaii, USA, 201
    corecore