19,617 research outputs found

    An Analytical Review of Orientation Based Concurrency Control Algorithm

    Get PDF
    There is an ever-increasing demand for higher throughputs in transaction processing systems leading to higher degrees of transaction concurrency.Concurrency control in Database management systems ensures that database transactions are performed concurrently without violating the data integrity of the database. Thus concurrency control is an essential element for correctness in any system where two database transactions or more, executed with time overlap, can access the same data. There are problems like Deadlock,Livelock and prevention of these problems is vital in concurrency control of distributed database systems.Many techniques have been proposed for managing concurrent execution of transactions in database systems.A new method for concurrency control in distributed DBMS2019;s,is discussed which will improve system performance by reducing the chances of deadlock and livelock and reducing restart ratio

    A unified concurrency control algorithm for distributed database systems

    Get PDF
    We present a unified concurrency-control algorithm for distributed database systems in which each transaction may choose its own concurrency control protocol. Specifically, they integrate two-phase locking, timestamp ordering, and precedence agreement into one unified concurrency-control scheme. They show the correctness of the scheme and study the problem of selecting the best protocol for each transaction to optimize system performance.published_or_final_versio

    On the complexity of concurrency control by locking in distributed database systems

    Get PDF
    Given a pair of locked transactions, accessing a distributed database, the problem is studied of whether this pair is safe, i.e., guaranteed to produce only serializable schedules. It is shown that an easy-to-test graph condition, which characterizes safety for a pair of locked transactions in a centralized database, also applies when the database has been distributed among at most three sites

    Improving transaction abort rates without compromising throughput through judicious scheduling

    Get PDF
    Althought optimistic concurrency control protocols have increasingly been used in distributed database management systems, they imply a trade-of between the number of transactions that can be executed concurrently, hence, the peak throughput, and transactions aborted due to conflicts. We propose a novel optimistic concurrency control mechanism that controls transaction abort rate by minimizing the time during which transactions are vulnerable to abort, without compromising throughput. Briefly, we throttle transaction execution with an adaptive mechanism based on the state of the transaction queues while allowing out-of-order execution based on expected transaction latency. Prelimi- nary evaluation shows that this provides a substantial improvement in committed transaction throughput.(undefined

    Accelerated Data Delivery Architecture

    Get PDF
    This paper introduces the Accelerated Data Delivery Architecture (ADDA). ADDA establishes a framework to distribute transactional data and control consistency to achieve fast access to data, distributed scalability and non-blocking concurrency control by using a clean declarative interface. It is designed to be used with web-based business applications. This framework uses a combination of traditional Relational Database Management System (RDBMS) combined with a distributed Not Only SQL (NoSQL) database and a browser-based database. It uses a single physical and conceptual database schema designed for a standard RDBMS driven application. The design allows the architect to assign consistency levels to entities which determine the storage location and query methodology. The implementation of these levels is flexible and requires no database schema changes in order to change the level of an entity. Also, a data leasing system to enforce concurrency control in a non-blocking manner is employed for critical data items. The system also ensures that all data is available for query from the RDBMS server. This means that the system can have the performance advantages of a DDBMS system and the ACID qualities of a single-site RDBMS system without the complex design considerations of traditional DDBMS systems

    A Framework for Data Sharing in Computer Supported Cooperative Environments

    Get PDF
    Concurrency control is an indispensable part of any information sharing system. Co-operative work introduces new requirements for concurrency control which cannot be met using existing applications and database management systems developed for non-cooperative environments. The emphasis of concurrency control in conventional database management systems is to keep users and their applications from inadvertently corrupting data rather than support a workgroup develop a product together. This insular approach is necessary because applications that access the database have been built with the assumptions that they have exclusive access to the data they manipulate and that users of these applications are generally oblivious of one another. These assumptions, however, are counter to the premise of cooperative work in which human-human interaction is emphasized among a group of users utilizing multiple applications to jointly accomplish a common goal. Consequently, applying conventional approaches to concurrency control are not only inappropriate for cooperative data sharing but can actually hinder group work. Computer support for cooperative work must therefore adopt a fresh approach to concurrency control which does promote group work as much as possible, but without sacrifice of all ability to guarantee system consistency. This research presents a new framework to support data sharing in computer supported cooperative environments; in particular, product development environments where computer support for cooperation among distributed and diverse product developers is essential to boost productivity. The framework is based on an extensible object-oriented data model, where data are represented as a collection of interrelated objects with ancillary attributes used to facilitate cooperation. The framework offers a flexible model of concurrency control, and provides support for various levels of cooperation among product developers and their applications. In addition, the framework enhances group activity by providing the functionality to implement user mediated consistency and to track the progress of group work. In this dissertation, we present the architecture of the framework; we describe the components of the architecture, their operation, and how they interact together to support cooperative data sharing
    • …
    corecore