52,740 research outputs found

    Web-Based Remote Monitoring And Controlling System Using Embedded Web Server

    Get PDF
    The World Wide Web (WWW) has established itself as a strong medium for distributed computing: a network user interface that is powerful and platform independent. As embedded systems become more prevalent. the need for connectivity of the devices or appliances to the WWW becomes inevitable. This thesis proposed a system that can control and monitor appliances or devices through the web by implementing embedded web server called SitePlayer web server. The embedded web server is used to serve static or dynamic information requested by user through the standard web browser such as Internet Explorer and Netscape. Web page which contains dynamic data that acts as a user interface is designed using HTML language. These Web pages is downloaded into the SitePlayer web server through the SiteLinker Program. The downloading process is done through the Ethernet line. From the web page, user from remote site can open a link to control or monitor the status of the application at local site using Web browser such as Internet Explorer

    Covert Distributed Computing Using Java Through Web Spoofing

    Get PDF
    We use the Web Spoofing attack reported by Cohen and also the Secure Internet Programming Group at Princeton University to give a new method of achieving covert distributed computing with Java. We show how Java applets that perform a distributed computation can be inserted into vulnerable Web pages. This has the added feature that users can rejoin a computation at some later date through bookmarks made while the pages previously viewed were spoofed. Few signs of anything unusual can be observed. Users need not knowingly revisit a particular Web page to be victims. We also propose a simple countermeasure against such a spoofing attack, which would be useful to help users detect the presence of Web Spoofing. Finally, we introduce the idea of browser users, as clients of Web-based services provided by third parties, paying for these services by running a distributed computation applet for a short period of time

    Evolution of network computing paradigms: applications of mobile agents in wired and wireless networks

    Get PDF
    The World Wide Web (or Web for short) is the largest client-server computing system commonly available, which is used through its widely accepted universal client (the Web browser) that uses a standard communication protocol known as the HyperText Transfer Protocol (HTTP) to display information described in the HyperText Markup Language (HTML). The current Web computing model allows the execution of server-side applications such as Servlets and client-side applications such as Applets. However, it offers limited support for another model of network computing where users would be able to use remote, and perhaps more powerful, machines for their computing needs. The client-server model enables anyone with a Web-enabled device ranging from desktop computers to cellular telephones, to retrieve information from the Web. In today's information society, however, users are overwhelmed by the information with which they are confronted on a daily basis. For subscribers of mobile wireless data services, this may present a problem. Wireless handheld devices, such as cellular telephones are connected via wireless networks that suffer from low bandwidth and have a greater tendency for network errors. In addition, wireless connections can be lost or degraded by mobility. Therefore, there a need for entities that act on behalf of users to simplify the tasks of discovering and managing network computing resources. It has been said that software agents are a solution in search of a problem. Mobile agents, however, are inherently distributed in nature, and therefore they represent a natural view of a distributed system. They provide an ideal mechanism for implementing complex systems, and they are well suited for applications that are communicationscentric such as Web-based network computing. Another attractive area of mobile agents is processing data over unreliable networks (such as wireless networks). In such an environment, the low reliability network can be used to transfer agents rather than a chunk. of data. The agent can travel to the nodes of the network, collect or process information without the risk of network disconnection, then return home. The publications of this doctorate by published works report on research undertaken in the area of distributed systems with emphasis on network computing paradigms, Web-based distributed computing, and the applications of mobile agents in Web-based distributed computing and wireless computing. The contributions of this collection of related papers can be summarized in four points. First, I have shown how to extend the Web to include computing resources; to illustrate the feasibility of my approach I have constructed a proof of concept implementation. Second, a mobile agent-based approach to Web-based distributed computing, that harness the power of the Web as a computing resource, has been proposed and a system has been prototyped. This, however, means that users will be able to use remote machines to execute their code, but this introduces a security risk. I need to make sure that malicious users cannot harm the remote system. For this, a security policy design pattern for mobile Java code has been developed. Third, a mediator-based approach to wireless client/server computing has been proposed and guidelines for implementing it have been published. This approach allows access to Internet services and distributed object systems from resource-constraint handheld wireless devices such as cellular telephones. Fourth and finally, a mobile agent-based approach to the Wireless Internet has been designed and implemented. In this approach, remote mobile agents can be accessed and used from wireless handheld devices. Handheld wireless devices will benefit greatly from this approach since it overcomes wireless network limitations such as low bandwidth and disconnection, and enhances the functionality of services by being able to operate without constant user input

    Genet: A Quickly Scalable Fat-Tree Overlay for Personal Volunteer Computing using WebRTC

    Full text link
    WebRTC enables browsers to exchange data directly but the number of possible concurrent connections to a single source is limited. We overcome the limitation by organizing participants in a fat-tree overlay: when the maximum number of connections of a tree node is reached, the new participants connect to the node's children. Our design quickly scales when a large number of participants join in a short amount of time, by relying on a novel scheme that only requires local information to route connection messages: the destination is derived from the hash value of the combined identifiers of the message's source and of the node that is holding the message. The scheme provides deterministic routing of a sequence of connection messages from a single source and probabilistic balancing of newer connections among the leaves. We show that this design puts at least 83% of nodes at the same depth as a deterministic algorithm, can connect a thousand browser windows in 21-55 seconds in a local network, and can be deployed for volunteer computing to tap into 320 cores in less than 30 seconds on a local network to increase the total throughput on the Collatz application by two orders of magnitude compared to a single core

    Pando: Personal Volunteer Computing in Browsers

    Full text link
    The large penetration and continued growth in ownership of personal electronic devices represents a freely available and largely untapped source of computing power. To leverage those, we present Pando, a new volunteer computing tool based on a declarative concurrent programming model and implemented using JavaScript, WebRTC, and WebSockets. This tool enables a dynamically varying number of failure-prone personal devices contributed by volunteers to parallelize the application of a function on a stream of values, by using the devices' browsers. We show that Pando can provide throughput improvements compared to a single personal device, on a variety of compute-bound applications including animation rendering and image processing. We also show the flexibility of our approach by deploying Pando on personal devices connected over a local network, on Grid5000, a French-wide computing grid in a virtual private network, and seven PlanetLab nodes distributed in a wide area network over Europe.Comment: 14 pages, 12 figures, 2 table

    Document Archiving, Replication and Migration Container for Mobile Web Users

    Full text link
    With the increasing use of mobile workstations for a wide variety of tasks and associated information needs, and with many variations of available networks, access to data becomes a prime consideration. This paper discusses issues of workstation mobility and proposes a solution wherein the data structures are accessed in an encapsulated form - through the Portable File System (PFS) wrapper. The paper discusses an implementation of the Portable File System, highlighting the architecture and commenting upon performance of an experimental system. Although investigations have been focused upon mobile access of WWW documents, this technique could be applied to any mobile data access situation.Comment: 5 page
    corecore